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a Fortran Package for Nonlinear Programming
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ABSTRACT

-' This report forms the user's guide for Version 4.0 of NPSOL, a set of Fortran subroutines
designed to minimize a smooth function subject to constraints, which may include simple bounds
on the variables, linear constraints and smooth nonlinear constraints. (NPSOL may also be used for
unconstrained, bound-constrained and linearly constrained optimization.) The user must provide
subroutines that define the objective and constraint functions and (optionally) their gradients. All
matrices are treated as dense, and hence NPSOL is not intended for large sparse problems.

NPSOL uses a sequential quadratic programming (SQP) algorithm, in which the search direc-
tion is the solution of a quadratic programming (QP) subproblem. The algorithm treats bounds,
linear constraints and nonlinear constraints separately. The Hessian of each QP subproblem is
a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function. The
steplength at each iteration is required to produce a sufficient decrease in an augmented Lagrangian
merit function. Each QP subproblcm is solved using a quadratic programming package with several
features that improve the efficiency of an SQP algorithm.

t NPSOL is available from the Stanford Office of Technology Licensing, 350 Cambridge Avenue,
Suite 250, Palo Alto, California 94306, USA.

The material contained in this report is based upon research supported by the U.S. Department a'.

of Energy Contract DE-AA03-76SF00326, PA No. DE-AS03-76ER.72018; National Science Foun-
dation Grants DCR-8413211 and ECS-8312142; the Office of Naval Research Contract N00014-85-
K-0343; and the U.S. Army Research Office Contract DAAG29-84-K-0156.
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1. PURPOSE 1

1. PURPOSE
NPSOL is a collection of Fortran 77 subroutines designed to solve the nonlinear programming

problem: the minimization of a smooth nonlinear function subject to a set of constraints on the
variables. The problem is assumed to be stated in the following form:

NP minimize F(x)

subject to 1< AL <U *,

where F(z) (the objective function) is a nonlinear function, A, is an mL x n constant matrix of
. general constraints, and c(z) is an mN-vector of nonlinear constraint functions. (The matrix AL

and the vector c(z) may be empty.) The objective function F and the constraint functions are ,0
assumed to be smooth, i.e., at least twice-continuously differentiable. (The method of NPSOL will
usually solve NP if there are only isolated discontinuities away from the solution).

Note that upper and lower bounds are specified for all the variables and for all the constraints.
This form allows full generality in specifying other types of constraints. In particular, the i-th
constraint may be defined as an equality by setting i = ui. If certain bounds are not present, the
associated elements of I or u can be set to special values that will be treated as -oo or +o.

If there are no nonlinear constraints in NP and F is linear or quadratic, the QPSOL or LSSOL
packages (Gill et al., 1984a, 1986a) will generally be more efficient than NPSOL. If the problem is
large and sparse, the MINOS package (Murtagh and Saunders, 1982, 1983) should be used, since
NPSOL treats all matrices as dense.

The user must supply an initial estimate of the solution to NP, and subroutines that define
F(x), c(x), and as many first partial derivatives as possible; unspecified derivatives are approxi-
mated by finite-differences.

NPSOL is based on subroutines from Version 1.0 of the LSSOL constrained linear least-squares
package; the documentation of LSSOL (Gill et al., 1986a) should be consulted in conjunction with
this report. NPSOL contains approximately 15,000 lines of ANSI (1977) Standard Fortran, of which47% are comments.

07
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User's Guide for NPSOL 4.0

2. DESCRIPTION OF THE ALGORITHM j
Here we briefly summarize the main features of the method of NPSOL. Where possible, explicit rZ
reference is miade to the names of variables that are parameters of subroutine NPSOL or appear in
the printed output. .

At a solution of NP, some of the constraints will be active, i.e., satisfied exactly. An active
simple bound constraint implies that the corresponding variable is fixed at its bound, and hence
the variables are partitioned into fixed and free variables. Let C denote the m x n matrix of
gradients of the active general linear and nonlinear constraints. The number of fixed variables will
be denoted by nx, with n~F (nF, = n - n,.x) the number of free variables. The subscripts "FX"
and "FR" on a vector or matrix will denote the vector or matrix composed of the components . -

corresponding to fixed or free variables.

A point x is a first-order Kuhn-Tucker point for NP (see, e.g., Powell, 1974) if the following
conditions hold:

(i) z is feasible;
(ii) there exist vectors and A (the Lagrange multiplier vectors for the bound and general

constraints) such that
g = CTA+, (1)

where g is the gradient of F evaluated at x, and , 0 if the j-th variable is free. -.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower "'
bound must be non-negative, and non-positive for an inequality constraint active at
its upper bound. -.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the
rows of CFR; i.e., CFRZ = 0. An equivalent statement of the condition (1) in terms of Z is

S.-.ZT9gvk = 0. "..

The vector Z TgFR is termed the projected gradient of F at x. Certain additional conditions must
be satisfied in order for a first-order Kuhn-Tucker point to be a solution of NP (see, e.g., Powell,
1974).

The method of NPSOL 4.0 is a sequential quadratic programming (SQP) method. For an
overview of SQP methods, see, for example, Fletcher (1981), Gill, Murray and Wright (1981) and "'

* Powell (1983). .

The basic structure of NPSOL involves major and minor iterations. The major iterations
generate a sequence of iterates {xjk} that converge to * a first-order Kuhn-Tuckcr point of NP. At
a typical major iteration, the new iterate : is defined by

= z + ap, (2)

where x is the current iterate, the non-negative scalar a is the step length, and p is the search
direction. (For simplicity, we shall always consider a typical iteration and avoid reference to the
,index of the iteration.) Also associated with each major iteration are estimates of the Lagrange

", multipliers and a prediction of the active set.
The search direction p in (2) is the solution of a quadratic programming subproblem of the %

form
minimize gTp + lpTHp I

p (3)
subject to I < &p

- "" ..................... "-..
,......,, .. '. .. .'.. ,.. "., -. ,. -. .. '. ... . ... -.. " .. -. - -," "..-,,..'., , -* .- --,'.,,. ,,, , ,. , ,-



2. DESCRIPTION OF THE ALGORITHM 8

where g is the gradient of F at x, the matrix H is a positive-definite quasi-Newton approximation
to the Hessian of the Lagrangian function (see Section 2.3), and AN is the Jacobian matrix of c
evaluated at x. (Finite-difference estimates may be used for g and AN; see the optional parameter
"Derivative Level" in Section 5.2.) Let I in NP be partitioned into three sections: t,, tL and
1 ,, corresponding to the bound, linear and nonlinear constraints. The vector I in (3) is similarly
partitioned, and is defined as

. lB--z, IL=L-AL:, and I,,=IN-C,

where c is the vector of nonlinear constraints evaluated at x. The vector fl is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from
the subproblem (3) (and similarly for the predicted active set). (The numbers of bounds, general
linear and nonlinear constraints in the QP active set are the quantities "Bnd", "Lin" and "Nln"
in the printed output of NPSOL.) In NPSOL, (3) is solved using subroutines from Version 1.0 of
the LSSOL package (Gill et al., 1986a). Since solving a quadratic program is itself an iterative
procedure, the minor iterations of NPSOL are the iterations of LSSOL. (More details about solving
the subproblem are given in Section 2.1.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let
the subscripts "FX" and "FR" refer to the predicted fixed and free variables, and let C denote the
m x n matrix of gradients of the general linear and nonlinear constraints in the predicted active
set. First, we have available the TQ factorization of CFI:

C,.Q, =(0 T), (4)

where T is a nonsingular m x m reverse-triangular matrix (i.e., t,, = 0 if i + j < m), and the

non-singular npR x nF matrix QFR is the product of orthogonal transformations (see Gill et a).,
p . 1984a). Second, we have the upper-triangular Cholesky factor R of the transformed and re-ordereti

Hessian matrix
RTR = HQ a QTQ, (5)

• where t is the Hessian H with rows and columns permuted so that the free variables are first, and

SQ is the n x n matrix "G
Q(QF ' (6)

with Ix the identity matrix of order nFx. If the columns of QIR are partitioned so that

QI=(Z Y),

the n2 (nz =nF - m) columns of Z form a basis for the null space of CFR. The matrix Z is used
to compute the projected gradient ZTgr at the current iterate. (The values "Nz", "Norm Gf", and
"Norm Gz" printed by NPSOL give n, and the norms of gF and Z T PAf.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP
subproblem (3) is identical to the correct active set in a neighborhood of . In NPSOL, this feature
is exploited by using the QP active set from the previous iteration as a prediction of the active
set for the next QP subproblem, which leads in practice to optimality of the subproblems in only
one iteration as the solution is approached. Separate treatment of bound and linear constraints in
NPSOL also saves computation in factorizing C,. and Hq.
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Once p has been computed, the major iteration proceeds by determining a steplength o that
produces a "sufficient decrease" in an augmented Lagrangian merit function (see Section 2.2).
Finally, the approximation to the transformed Hessian matrix Hq is updated using a modified

BFGS quasi-Newton update (see Section 2.3) to incorporate new curvature infoirmation obtained
in the move from z to :. .- "

On entry to NPSOL, an iterative procedure from the LSSOL package is executed, starting with
the user-Iprovided initial point, to find a point that is feasible with respect to the ,bounds and linear
constraints (using the tolerance specified by "Linear Feasibility Tolerance"; see Section 5.2).
If no feasible point exists for the bound and linear constraints, NP has no solution and NPSOL
terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are
feasible with respect to the bounds and linear constraints. The only exception involves variables
whose bounds differ by an amount comparable to the finite-difference interval (see the discussion

* of "Difference Interval" in Section 5.2). In contrast to the bounds and linear constraints, it
must be emphasized that the nonlinear constraints will not generally be satisfied until an optimal

point is reached.
Facilities are provided to check whether the user-provided gradients appear to be correct (see

the optional parameter "Verify" in Section 5.2). In general, the check is provided at the first
point that is feasible with respect to the linear constraints and bounds. However, the user may
request that the check be performed at the initial point.

In summary, the method of NPSOL first determines a point that satisfies the bound and linear
constraints. Thereafter, each iteration includes: (a) the solution of a quadratic programming
subproblem; (b) a linesearch with an augmented Lagrangian merit function; and (c) a quasi- e

Newton update of the approximate Hessian of the Lagrangian function. These three procedures
are described in more detail in the next three subsections.

2.1. Solution of the quadratic programming subproblem

The search direction p is obtained by solving (3) using subroutines from the LSSO4 package (Gill
et al., 198 6 ,t), which was specifically designed to be used within an SQP algorithm for nonlinear

"" programming.

The method of LSSOL is a two-phase (primal) quadratic programming method. The two
phases of the method are: finding an initial feasible point by minimizing the sum of infeasibilities
(the feasibility phase), and minimizing the quadratic objective function within the feasible region
(the optinmality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from
the sum of infeasibilities to the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate
of the solution of (3); the new iterate f is defined by

= p + ad, (7)

where, as in (2), a* is a non-negative step length and d is a search direction.
At the beginning of each iteration of LSSOL, a working set is defined of constraints (general

and bound) that are satisfied exactly. The vector d is then constructed so that the values of

constraints in the working set remain unaltered for any move along d. For a bound constraint in
the working set, this property is achieved by setting the corresponding component of d to zero,
i.e., by fixing the variable at its bound. As before, the subscripts "FX" and "Fit" denote selection
of the components associated with the fixed and free variables.

" ". "- " .. , ." -". . - " : - . : . - . " . , . . " ... ... . . .. , .. ' : ,- ,-" . . • "/ " : 1 - '



2. DESCRIPTION OF THE ALGORITHM 5

Let C denote the submatrix of rows of

(A,

A,)

corresponding to general constraints in the working set. The general constraints in the working
set will remain unaltered if

SCFRdFR = 0, (8)

which is equivalent to defining d,. as

d, = Zdz (9)

for some vector d2 , where Z is the matrix associated with the TQ factorization (4) of CR.

The definition of d. in (9) depends on whether the current p is feasible. If not, d, is zero except
for a component 7 in the j-th position, where j and 7 are chosen so that the sum of infeasibilities
is decreasing along d. (For further details, see Gill et al., 1986a.) In the feasible case, d, satisfies
the equations

RTd = -ZTq, (10)

. where R_ is the Cholesky factor of ZTHR Z and q is the gradient of the quadratic objective function
(q = g + Hp). (The vector ZTqIR is the projected gradient of the QP.) With (10), p + d is the
minimizer of the quadratic objective function subject to treating the constraints in the working
set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in
the subspace defined by the working set. During the feasibility phase, the projected gradient will
usually be zero only at a vertex (although it may vanish at non-vertices in the presence of constraint
dependencies). During the optimality phase, a zero projected gradient implies that p minimizes

. the quadratic objective function when the constraints in the working set are treated as equalities.
*.-. In either case, Lagrange multipliers are computed. Given a positive constant 6 of the order of . -

the machine precision, the Lagrange multiplier li, corresponding to an inequality constraint in the
working set at its upper bound is said to be optimal if t# < b when the j-th constraint is at its
upper bound, or if pi > -6 when the associated constraint is at its lower bound. If any multiplier is
non-optimal, the current objective function (either the true objective or the sum of infeasibilities)

A". can be reduced by deleting the corresponding constraint from the working set.
N. If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero,

no feasible point exists. The QP algorithm will then continue iterating to determine the minimum
sum of infeasibilities. At this point, the Lagrange multiplier li will satisfy -(1 + 6) </1i < 6 for
an inequality constraint at its upper bound, and -6 < it < 1 + 6 for an inequality at its lower
bound. The Lagrange multiplier for an equality constraint will satisfy 11ij 15 1 + 6.

The choice of step length o in the QP iteration (7) is based on remaining feasible with respect
: to the satisfied constraints. During the optimality phase, if p + d is feasible, o will be taken as

unity. (In this case, the projected gradient at 15 will be zero.) Otherwise, or is set to aM, the step
to the "nearest" constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to C,,: if the status of a general
constraint changes, a row of C is altered; if a bound constraint enters or leaves the working set,
a column of CR changes. Explicit representations are recurred of the matrices T, QR and R, and
of the vectors QTq and QTg.

.....................%
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2.2. The merit function
[- After compjuting the search direction as described in Section 2.1, each major iteration proceeds by .
* determinilng a steplength n in (2) that produces a "sufficient decrease" in the augmented Lagrangian
[* merit function

A£(x, A, s) = F(z) - EAi(ci(x) - s) + 2 Zpi(ci(X)- si) 
2

where x, A and s vary during the linesearch. The summation terms in (11) involve only the
-" nonlinear constraints. The vector A is an estimate of the Lagrange multipliers for the nonlinear

constraints of NP. The non-negative slack variables {si} allow nonlinear inequality constraints to
,*. be treated without introducing discontinuities. The solution of the QP subproblem (3) provides a
* vector triple that serves as a direction of search for the three sets of variables. The non-negative

vector p of penalty parameters is initialized to zero at the beginning of the first major iteration.
Thereafter, selected components are increased whenever necessary to ensure descent for the merit

* function. Thus, the sequence of norms of p (the printed quantity "Penalty"; see Section 6) is
generally non-decreasing, although each pi may be reduced a limited number of times.

The nierit function (11) and its global convergence properties are described in Gill et al.
(1986b).

2.3. The quasi-Newton update

The matrix H in (3) is a positive-definite quasi-Newton approximation to the Hessian of the La-

grangian fuiction. (For a review of quasi-Newton methods, see Dennis and Schnabel, 1983.) At the
end of each major iteration, a new Hessian approximation [1 is defined as a rank-two modification
of H. In NPSOL, the BFGS quasi-Newton update is used:

[tH. :H Hss H + -xyy ,(12) i
a THs Y

where s - - x (the change in r).
In NPSOL, H is required to be positive definite. If H is positive definite, R as defined by (12)

will be positive definite if and only if y1 s is positive (see, e.g., Dennis and Mor6, 1977). Ideally, y U
in (12) would be taken as yL, the change in gradient of the Lagrangian function

y -AN1UN- + AT N, (13)

where p denotes the QP multipliers asociated with the nonlinear constraints of the original
problem. If yrs is not sufficiently positive, an attempt is made to perform the update with a vector
y of the form -

MN

Y= L + Zw,(ai(i)ciG)- 

where wi > 0. If no such vector can be found, the update is performed with a scaled y,; in this
case. -M- is printed to indicate that the update was modified. Z

Rather than modifying H itself, the Cholesky factor of the transformed Hessian H1, (4) is
• "updated. where Q is the matrix from (3) associated with the active set of the QP subproblem. The
.' update (12) is equivalent to the following update to H.:

H = H9  1 1 (14)
8H QS Q ±Q Q~y~

* where y, = QTy, and s = QTs. This update may be expressed as a rank-one update to R (see
Dennis and Schnabel, 1981).

Full details concerning the Hessian update are given in Gill et al. (1986c).

mm'
-" ? I



S. SPECIFICATION OF SUBROUTINE NPSOL 7

3. SPECIFICATION OF SUBROUTINE NPSOL
The formal specification of NPSOL is the following:

'..*

SUBROUTINE NPSOL C N, NCLIN, NCNLN, NROWA, NROWJ, NROWR,
A, BL, BU,
CONFUN, OBJFUN,
INFORM, ITER, ISTATE,

C, CJAC, CLAMDA, OBJF, GRAD, R, X,
IW, LENIW, W, LENW )

INTEGER N, NCLIN, NCNLN,
NROWA, NROWJ, NROWR, INFORM, ITER, LENIW, LENW

INTEGER ISTATE(N+NCLIN+NCNLN), IW(LENIW)
REAL OBJF
REAL A(NROWA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),

C(*), CJAC(NROWJ,*), CLAMDA(N+NCLIN+NCNLN), GRAD(N),
* R(NROWR,*), X(N), W(LENW)

EXTERNAL CONFUN, OBJFUN

Note: Here and elsewhere, the specification of a parameter as REAL should be interpreted as working
precision, which may be DOUBLE PRECISION in some installations.

3.1. Formal parameters

N (Input) The number of variables in the problem, i.e., the dimension of X. (N must
be positive.)

H NCLIN (Input) The number of general linear constraints in the problem. '(NCLIN may be

zero.)

NCNLN (Input) The number of nonlinear constraints in the problem. (NCNLN may be zero.)

NROWA (Input) The declared row dimension of the array A. NROWA must be at least I and
at least NCLIN.

NROWJ (Input) The declared row dimension of the array CJAC. NROWJ must be at least 1
and at least NCNLN.

NROWR (Input) The declared row dimension of the array R. NROWR must be at least N.

A (Input) A real array of declared dimension (NROWA,*), where the second dimension
must be at least N. A contains the matrix A, of general linear constraints in the
problem specification NP (Section 1). The i-th row of A, i = 1 to NCLIN, contains the
coefficients of the i-th general linear constraint. If NCLIN is zero, A is not accessed
and may be dimensioned (1, 1).

BL (Input) A real array of (iimension at least N + NCLIN + NCNLN that contains the lower
bounds for all the constraints, in the following order (which is also observed for BU,
CLAMDA and ISTATE). The first N elements of BL contain the lower bounds on the
variables. If NCLIN > 0, the next NCLIN elements of BL contain the lower bounds for
the general linear constraints. If NCNLN > 0, the next NCNLN elements of BL contain

.......................... **m* .



5 Uer : Guide for NJ'SOL 4.0

the lower bounds for the nonlinear constraints. In order for the problem specification
to be meaningfil, it is required that BL(j) < BU(j) for all j. To specify a non-existent
lower bound (i.e., 1j = -oc), the value used must satisfy BL(j) < -BIGBND, where
BIGBND is the value of the optional parameter Infinite Bound, whose default value
is 10"° (see Section 5.2). To specify the j-th constraint as an equality, the user must
set BL(j) = BU(j) = /3, say, where 1,01 < BIGBND. '".

BU (Input) A real array of dimension at least N + NCLIN-A NCNLN that contains the upper r
bounds for all the constraints, in the same order described above for BL. To specify a
non-existent upper bound (i.e., uj = oc), the value used must satisfy BU(j) > BIGBND.

CONFUN (User-defined subroutine) The name of a subroutine that calculates the vector
c(x) of nonlinear constraint functions and (optionally) its Jacobian for a specified
n-vector x. CONFUN must be declared as EXTERNAL in the routine that calls NPSOL.
For a detailed description of CONFUN, see Section 4.2.

OBJFUN (User-defined subroutine) The name of a subroutine that calculates the objective
function F(x) and (optionally) its gradient for a specified n-vector x. OBJFUN must
be declared as EXTERNAL in the routine that calls NPSOL. For a detailed description
of OBJFUN, see Section 4.1.

INFORM (Output) An integer that indicates the result of NPSOL. (A short description of
INFORM is printed if Major Print Level > 0.) The possibhle values of I14FORM are:

INFORM Meaning

< 0 The user has set MODE to this negative value in CONFUN or OBJFUN (see
Section 4).

0 The iterates have converged to a point X that satisfies the first-order
Kuhn-Tucker conditions to the accuracy requested by the optional pa-
ramneter Optimality Tolerance (see Section 5.2), i.e., the projected gra"
dient and active constraint residuals are negligible at X.

I The final iterate X satisfies the first-order Kuhn-Tucker conditions to the lp

accuracy requested, but the sequence of iterates has not yet converged.

NPSOL was terminated because no further improvement could be made..-
in the merit finction.

2 No feasible point could be found for the linear constraints and bounds.
The problem has no feasible solution. See Section 7 for further com-

mnents.

3 No feasible point could be found for the nonlinear constraints. The prob-

1cm may have no feasible solution. See Section 7 for further comments.

4 The limiting number of iterations (determined by the optional parameter
Major Iteration Limit: see Section 5.2) has been reached.

6 X does not satisfy the first-order Kuhn-Tucker conditions, and no im-

proved point for the merit function could be found during the final line

search.

The user-provided derivatives of the objective function and/or nonlinear

constraints appear to be incorrect.

9 An input parameter is invalid.

ITER (Output) Th, iumnber of major iterations performed.

."
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ISTATE (Input) An integer array of dimension at least N + NCLIN + NCNLN. ISTATE need not
be initialized if NPSOL is called with a Cold Start (the default option; see Section
5.2). The ordering of ISTATE is the same as that described above for BL, i.e., the
first N components of ISTATE refer to the upper and lower bounds on the variables,
components N + 1 through N + NCLIN refer to the upper and lower bounds on ALe,
and components N + NCLIN + 1 through N + NCLIN + NCNLN refer to the upper and
lower bounds on c(x). When a Warm Start option is chosen, the components of
ISTATE corresponding to the bounds and linear cotistraints define the initial working
set for the procedure that finds a feasible point for the linear constraints and bounds.
The active set at the conclusion of this procedure and the components of ISTATE

, corresponding to nonlinear constraints then define the initial working set for the first
* - QP subproblem. Possible values for ISTATE(j) are

ISTATE(j) Meaning

0 The corresponding constraint is not in the initial QP working set.

I This inequality constraint should be in the working set at its lower bound.

2 This inequality constraint should be in the working set at its upper
bound.

3 This equality constraint should be in the initial working set. This value
must not be specified unless BLUj) = BU(j). The values 1, 2 or 3 all have
the same effect when BL(j) = BU(j).

Other values of ISTATE are also acceptable. In particular, if NPSOL has been called
previously with the same values of N, NCLIN and NCNLN, ISTATE already contains sat-
isfactory values. If necessary, NPSOL will override the user's specification of ISTATE,
so that a poor choice will not cause the algorithm to fail.

. -"(Output) If NPSOL exits with INFORM = 0 or 1, the values in the array ISTATE
correspond to the active set of the final QP subproblem, and are a prediction of tht "-
status of the constraints at the solution of the problem. Otherwise, ISTATE indicates

0 the composition of the QP working set at the final iterate. The significance of each
possible value of ISTATE(j) is as follows:

ISTATE(j) Meaning

-2 This constraint violates its lower bound by more than the feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance
and Nonlinear Feasibility Tolerance in Section 5.2). This value can
occur only when no feasible point can be found for a QP subproblem.

-1 This constraint violates its upper bound by more than the appropri-
ate feasibility tolerance (see the optional parameters Linear Feasi-
bility Tolerance and Nonlinear Feasibility Tolerance in Section
5.2). This value can occur only when no feasible point can be found for

a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not
in the working set.

1 This inequality constraint is included in the QP working set at its lower
bound.

2 This inequality constraint is included in the QP working set at its upper

bound.
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3 This constraint is included in the QP working set as an equality. This
value of ISTATE can occur only when BL(j) = BU(j).

C (Output) A real array of dimension at least NCNLN. If NCNLN = 0, C is not accessed,
and may then be declared to be of dimension (1), or the actual parameter may be
any convenient array. If NCNLN > 0, C contains the values of the nonlinear constraint
functions ci, i = 1 to NCNLN, at the final iterate.

CJAC (Input) A real array of dimension (NROWJ, *), where the second dimension must be
at least N. If NCNLN = 0, CJAC is not accessed, and may then be declared to be of
e ,ension (1,1), or the actual parameter may be any convenient array.

In general, CJAC need not be initialized before the call to NPSOL. However, if Deriva-
tive Level = 3, the user may optionally set the constant elements of CJAC (see Sec-
tion 4.3). Such constant elements need not be re-assigned on subsequent calls to
CONFUN.

(Output) If NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear con-
straint functions at the final iterate, i.e., CJAC(i,j) contains the partial derivative of
the i-th constraint function with respect to the j-th variable, i = I to NCNLN, j = 1
to N. (See the discussion of CJAC under CONFUN in Section 4.2.)

CLAIDA (Input) A real array of dimension at least N + NCLIN + NCNLN. CLAMDA need not be
initialized if NPSOL is called with the (default) Cold Start option. With the Warm
Start option, CLAMDA must contain a multiplier estimate for each nonlinear constraint
with a sign that matches the status of the constraint specified by the ISTATE array
(as above). The ordering of CLAMDA is the same as that given above for BL. If
the j-th constraint is defined as "inactive" by the initial value of the ISTATE array, ' *.."

CLAMDA(j) should be zero; if the j-th constraint is an inequality active at its lower '
bound, CLAMDA(j) should be non-negative; if the j-th constraint is an itequality active
at its upper bound, CLAMDA(j) should be non-positive. r ,

(Output) CLAHDA gives the QP multipliers from the last QP subproblem. CLAMDA()
should be non-negative if ISTATE(j) = 1 and non-positive if ISTATE(i) = 2.

OBJF (Output) The value of the objective function F(x) at the final iterate.

OBJGRD (Output) A real array of dimension at least N that contains the objective gradient. .
(or its finite-difference approximation) at the final iterate.

R (Input) A real array of declared dimension (NROWR,*), where the second dimension
must be at least N. R need not be initialized if NPSOL is called with a Cold Start %
option (the default), and will be taken as the identity. With a Warm Start, R must
contain the upper-triangular Cholesky factor of the initial approximation of the Hes-
sian of the Lagrangian function, with the variables in the natural order. Elements not
in the upper-triangular part of R are assumed to be zero and need not be assigned.

(Output) If Hessian = No (the default; see Section 5.2), R contains the upper-
triangular Cholesky factor of QT/IQ, an estimate of the transformed and re-ordered %

Hessian of the Lagrangian at X (see (5) in Section 2). If Hessian = Yes, R contains
the upper-triangular Cholesky factor of H, the approximate (untransformed) Hessian
of the Lagrangian, with the variables in the natural order.

%I
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I (Input) A real array of dimension at least N. I must contain an initial estimate of
the solution.

Vr (Output) X contains the final estimate of the solution.

3.2. Workspace parameters

TW (Input) An integer array of dimension LENIW that provides integer workspace for
NPSOL.

-" LENIW (Input) The dimension of IW. LENIW must be at least 3 N + NCLIN + 2 NCNLN.

W (Input) A real array of dimension LENW that provides real workspace for NPSOL.

LENW (Input) The dimension of W. If there are no general linear constraints and no nonlin-
ear constraints (i.e., NCLIN = 0 and NCNLN = 0), LENW must be at least 20 N. If there are
no nonlinear constraints (i.e., NCNLN = 0), LENW must be at least 2 N2 +20 N+ 1I NCLIN.
Otherwise, LENW must be at least 2 N2 + N*NCLIN + 2 N*NCNLN + 20 N + 11 NCLIN +
21 NCNLN.

If Major Print Level > 0, the required amounts of workspace are printed. As an alternative
to computing LENIW and LENW from the formulas given above, the user may prefer to obtain
appropriate values from the output of a preliminary run with a positive value of Maj or Print
Level and LENIW and LENW set to 1. (NPSOL will then terminate with INFORM = 9.)

;.?.

- i
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4. USER-SUPPLIED SUBROUTINES
The user must provide subroutines that define the objective function and nonlinear constraints. U
The objective function is defined by subroutine OBJFUN, and the nonlinear constraints are defined
by subroutine CONFUN. On every call, these subroutines must return appropriate values of the
objective and nonlinear constraints in OBJF and C. The user should also provide the available.'-
partial derivatives. Any unspecified derivatives are approximated by finite differences; see Section
5.2 for a discussion of the optional parameter Derivative Level. Just before either OBJFUN or
CONFUN is called, each element of the current gradient array OBJGRD or CJAC is initialized to a
special value. On exit, any element that retains the given value is estimated by finite differences.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see
Chapter 8 of Gill, Murray and Wright, 1981, for a detailed discussion). If all gradients cannot be
provided, it is similarly advisable to provide as many as possible. While developing the subroutines
OBJFUN and CONFUN, the Verify parameter (see Section 5.2) should be used to check the calculation
of any known gradients.

4.1. Subroutine OBJFUN

This subroutine must calculate the objective function F(x) and (optionally) the gradient g(z).
The specification of OBJFUN is

SUBROUTINE OBJFUN( MODE, N, X, OBJF, OBJGRD, NSTATE )
INTEGER MODE, N. NSTATE
REAL OBJF
REAL X(N), OBJGRD(N)

Parameters:

MODE (Input) This parameter is set by NPSOL to indicate the values that must be assigned
(luring each call of OBJFUN. MODE will always have the value 2 if all components of the
objective gradient are specified by the user, i.e., if Derivative Level is either 1 or 3
(see Section 5.2). If some gradient elements are unspecified, NPSOL will call OBJFUN
with MODE= 0, 1 or 2.

If MODE = 2, compute OBJF and the available components of OBJGRD.

Tf MODE = 1, compute all available components of OBJGRD; OBJF is not required.

If MODE = 0, only OBJF needs to be computed; OBJGRD is ignored.

(Output) If for some reason you wish to terminate the solution of the current prob- -

leiu, set MODE to a negative value, e.g., -1.

N (Input) The number of variables, i.e., the dimension of X. The actual parameter N
will always be the same Fortran variable as that input to NPSOL, and must not be
altered by OBJFUN.

X (Input) An array of dimension at least N containing the values of the variables z for
which F must be evaluated. The array X must not be altered by OBJFUN.

OBJF (Output) The computed value of the objective function F(z).

OBJGRD (Output) The available components of the gradient vector g(x), i.e., OBJGRD(") con-
tains the partial derivative OF/Oxi.

-S%

NSTATE (Input) If NSTATE = 1, NPSOL is calling OBJFUN for the first time. This parameter ,%
setting allows the user to save computation time if certain data must be read or

,*1
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calculated only once. If there are nonlinear constraints, the first call to CONFUN will
occur before the first call to OBJFUN.

4.2. Subroutine CONFUN

This subroutine must compute the nonlinear constraint functions c(z) and (optionally) their gradi-
ents. (A dummy subroutine CONFUN must bc provided if all constraints are linear.) The i-th row of
the Jacobian matrix CJAC is the vector V, - (OciOz, Oci/Cz 2 ,.. . ,Oc 1/Oz,) T. The specification

.- of CONFUN is
SUBROUTINE CONFUN( MODE, NCNLN, N, NROWJ,

NEEDC, X, C, CJAC, NSTATE )
INTEGER MODE, NCNLN, N, NROWJ
INTEGER NEEDC(*)
REAL X(N), C(*), CJAC(NROWJ,*)

- ,.*. Parameters:

MODE (Input) This parameter is set by NPSOL to indicate the values that must be assigned
10 during each call of CONFUN. MODE will always have the value 2 if all elements of the

Jacobian are available, i.e., if Derivative Level is either 2 or 3 (see Section 5.2).
If some elements of CJAC are unspecified, NPSOL will call CONFUN with MODE = 0, 1,
or 2:
If MODE = 2, only the elements of C corresponding to positive values of NEEDC need to

be set (and similarly for the available components of the rows of CJAC).
If MODE = 1, the available components of the rows of CJAC corresponding to positive

values in NEEDC must be set. Other rows of CJAC and the array C will be
ignored. S.

'. If MODE = 0, the components of C corresponding to positive values in NEEDC must be

set. Other components and the array CJAC are ignored.

(Output) If for some reason you wish to terminate the solution of the current prob-
lem, set MODE to a negative value, e.g., -1.

NCNLN (Input) The number of nonlinear constraints, i.e., the dimension of C. The actual
5-" parameter NCNLN is the same Fortran variable as that input to NPSOL, and must not

be altered by CONFUN.

N (Input) The number of variables, i.e., the dimension of X. The actual parameter N
is the same Fortran variable as that input to NPSOL, and must not be altered by
CONFUN.

NROWJ (Input) The leading dimension of the array CJAC. NROWJ must be at least I and at
least NCNLN. .,

NEEDC (Input) An array that specifies the indices of the elements of C or CJAC that must
be evaluated by CONFUN. NEEDC need not be checked if the user always provides all
values, since the unneeded values are ignored.

X (Input) An array of dimension at least N containing the values of the variables X for
which the constraints must be evaluated. X must not be altered by CONFUN.

C (Output) An array of dimension at least NCNLN that contains the appropriate values
of the nonlinear constraints. If NEEDC(i) > 0 and MODE = 0 or 2, the value of the i-th
constraint at X must be stored in C(i). (The other components of C are ignored.) %

I - i
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L"

CJAC (Output) A real array of declared dimension (NROWJ,*), where the second diinen-
sion must be at least N, containing the appropriate elements of the Jacobian matrix .
evaluated at X. (See the discussion of MODE and CJAC above.)

*. The parameter NSTATE has the same meaning as for OBJFUN.

4.3. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2 or 3; see -
*; Section 5.2), any constant elements may be assigned to CJAC one time only at the start of the

optimization. An clement of CJAC that is not subsequently assigned in CONFUN will retain its initial
value throughout. Constant elements may be loaded into CJAC either before the call to NPSOL -

or during the the first call to CONFUN (signalled by the value NSTATE = 1). The ability to preload .

constants is useful when many Jacobian elements are identically zero, in which case CJAC may be
* initialized to zero and non-zero elements may be reset by CONFUN. ,

Note that constant nonzero elements do affect the values of the constraints. Thus, if CJAC(i,j)
is set to a constant value, it need not be reset in subsequent calls to CONFUN, but the value
CJAC(i,j)*X(j) must nonetheless be added to C(i).

It must be emphasized that, if Derivative Level < 2, unassigned elements of CJAC are not
treated as constant; they are estimated by finite differences, at non-trivial expense. If the user does
not supply a value for Difference Interval (see Section 5.2), an interval for each component of x
is comflputed automatically at the start of the optimization. The automatic procedure can usually
identify constant elements of CJAC, which are then computed once only by finite differences.

..

%
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5. OPTIONAL INPUT PARAMETERS

Several optional parameters in NPSOL define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of NPSOL, these optional parameters
have associated default values (see Section 5.2) that are appropriate for most problems. Therefore,
the user needs to specify only those optional parameters whose values are to be different from their
default values. The remainder of this section can be skipped by users who wish to use the default
values for all optional parameters. A complete list of optional parameters and their default values
is given in Section 5.3.

Each optional parameter is defined by a single character string of up to 72 characters, including
one or more items. The items associated with a given option must be separated by spaces or equal
signs (=). Alphabetic characters may be upper or lower case. The string

Print level = 5

is an example of an optional parameter.
For each option, the string contains the following items.

1. The keyword (required for all options).
2. A phrase (one or two words) that qualifies the keyword (only for some options).
3. A number that specifies either an INTEGER or a REAL value (only for some options).

Such numbers may be up to 16 contiguous characters in Fortran 77's 1, F, E or D
formats, terminated by a space.

Blank strings and comments are ignored and may be used to improve readability. A comment begins
with an asterisk (*) and all subsequent characters are ignored. If the string is not a comment and
is not recognized, a warning message is printed on the specified output device (see Section 8.5).
Synonyms are recognised for some of the keywords, and abbreviations may be used.

The following are examples of valid option strings for NPSOL:

" NOLIST

warm start
* COLD START

S,"Verify Constraint gradients
Start OBJECTIVE check at variable 9
Stop constraint check at variable = 20 * The '' is optional

,J1 Linear Feasibility tolerance 1.OE-8 * for IBM in double precision.
CRASH TOLERANCE = .002
* This string will be completely ignored.
Hessian Yes
Iteration limit 100

"-°-

5.1. Specification of the optional parameters

Optional parameters may be specified in two ways, as follows.

9 Using subroutine NPFILE and an external file

The subroutine NPFILE provided with the NPSOL package will read options from an external
options file, and should be called before a call to NPSOL. Each lir., of the options file defines a
single optional parameter. The file must begin with Begin and end with End. (An options file
consisting only of these two lines corresponds to supplying no options.)

%.5.
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The specification of NPFILE is

SUBROUTINE NPFILE( IOPTNS, INFORM ) V .
INTEGER IOPTNS, INFORM

IOPTNS must be the unit number of the options file, in the range [0,99], and is unchanged on exit '.j
from NPFILE. INFORM need not be set on entry. On return, INFORM will be 0 if the file is a valid
options file and IOPTNS is in the correct range. INFORM will be set to 1 if IOPTNS is out of range,
and will be set to 2 if the file does not begin with Begin or end with End.

An example of a valid options file is

Begin
Print level = 5
Verify Objective Gradients

End

The call
CALL NPFILE( 5, INFORM )

will read an options file on unit 5.

. Using subroutine NPOPTN

The second method of setting the optional parameters is through a series of calls to the subroutine
NPOPTN provided with the NPSOL package. The specification of NPOPTN is . -

SUBROUTINE NPOPTN( STRING )
CHARACTER*(*) STRING

STRING must be a single valid option string (see above), and will be unchanged on exit. NPOPTN
must be called once for every optional parameter to be set. An example of a call to NPOPTN is

CALL NPOPTN( 'Print level = 5' )

. Use of the Nolist and Defaults option

In general, each user-specified optional parameter is printed as it is read or defined. By using the
. special parameter Nolist, the user may suppress this printing for a given call of NPSOL. To take
", effect, Nolist must be the first parameter specified in the options file; for example

Begin
Nolist -
Verify Objective Gradients

End

Alternatively, the first call to NPOPTN, before or after a call to NPSOL, must be

CALL NPOPTN( 'Nolist' ). U.

All parameters not specified by the user are automatically set to their default values. Any
optional parameters that are set by the user are not altered by NPSOL, and hence changes to the

." .'.-' - * " .-' . -" -* ." .. ."." . . . ". ".-.. "." ".. -.... ..-... .... . .... . .. . . ... .i.-'. ..- ".'.
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options are cumulative. For example, calling NPOPTN( 'Print level = 5' ) sets the print level
to 5 for all subsequent calls to NPSOL until it is reset by the user. The only exception to this
rule is permitted by the special optional parameter Defaults, whose effect is to reset a/l optional
parameters to their default values (see Section 5.3). For example, in the following situation

CALL NPSOL C ... )
C

CALL NPOPTN( 'Print level 6'
CALL NPOPTN( 'Iteration limit = 100' )
CALL NPSOL ( )

C
CALL NPOPTN( 'Defaults' )
CALL NPSOL ( ... )

the first and last runs of NPSOL will occur with the default parameter settings. However, in the
second run, the print level and iteration limit are altered.

5.2. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the
keyword, any essential optional qualifiers, the default value, and the definition. The minimum
valid abbreviation of each keyword is underlined. If no characters of an optional qualifier are
underlined, the qualifer may be omitted. The letter a denotes a phrase (character string) that
qualifies an option. The letters i and r denote INTEGER and REAL values required with certain
options. The number e is a generic notation for machine precision, and c, denotes the relative
precision of the objective function (the optional parameter Function Precision; see below).

. Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
p sufficiently accurate, the value of r is used as the difference interval for every component of z.

The use of finite-differences is discussed further below under the optional parameter Difference
Interval.

Cold Start Default = Cold Start
Warm Start

- This option controls the specification of the initial working set in both the procedure for finding
a feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter.
With a Cold Start, the first working set is chosen by NPSOL based on the values of the variables
and constraints at the initial point. Broadly speaking, the initial working set will include equality
constraints and bounds or inequality constraints that violate or "nearly" satisfy their bounds
(within Crash Tolerance; see below). With a Warm Start, the user must set the ISTATE array
and define CLAMDA and R as discussed in Section 3. ISTATE values associated with bounds and
linear constraints determine the initial working set of the procedure to find a feasible point with
respect to the bounds and linear constraints. ISTATE values associated with nonlinear constraints
determine the initial working set of the first QP subproblem after such a feasible point has been
found. NPSOL will override the user's specification of ISTATE if necessary, so that a poor choice of
the working set will not cause a fatal error. A warm start will be advantageous if a good estimate of
the initial working set is available-for example, when NPSOL is called repeatedly to solve related
problems.

r e



18 User's Guide for NPSOL 4.0
-,

Crash Tolerance r Dfault = .01

This value is used in conjunction with the optional parameter Cold start (the defauilt value).
When making a cold start, the QP algorithm in NPSOL must select an initial working set. When
r > 0, the initial working set will include (if possible) bounds or general inequality con:.traints that
lie within r of their bounds. In particular, a constraint of the form ajx > I will be included in the

initial working set if Ia Tz - LI < r(l + I1). If r < 0 or r > 1, the default value is used.

Derivative Level i Default = 3

This paramete'r indicates which derivatives are provided by the user in subroutines OBJFUN and
CONFUN. The possible choices for i are the following.

Meaning

3 All objective and constraint gradients are provided by the user.

2 All of the .lacobian is provided, but some components of the objective gradient are
not specified by the user.

1 All elements of the objective gradient are known, but some elements of the Jacobian
matrix are not specified by the user.

0 Some elements of both the objective gradient and the Jacobian matrix are not specified
by the user.

The value i = 3 should be used whenever possible, since NPSOL is more reliable and will usually
be more efficient when all derivatives are exact. J_

If i = 0 or 2, NPSOL will estimate the unspecified components of the objective gradient,
using finite differences. The computation of finite-difference approximations usually increases the
total run-time, since a call to 0BJFUN is required for each unspecified element. Furthermore, less -q p
accuracy can be attained in the solution (see Chapter 8 of Gill, Murray and Wright, 1981, for a - -
discussion of limiting accuracy).

If i 0 or 1, NPSOL will approximate unspecified elements of the Jacobian. One call to
CONFUN is needed for each variable for which partial derivatives are not available. For example, if

the Jacoiian has the form

* * *

where "*" indicates an element provided by the user and "?" indicates an unspecified element,

NPSOL will call CONFUN twice: once to estimate the missing element in column 2, and again to
estimate the two missing elements in column 3. (Since columns I and 4 are known, they require
no rails to CONFUN.)

At tinics. central differences are used rather than forward differences, in which case twice as
many cails to OBJFUN and CONFUN are needed. (The switch to central differences is not under the
user's control.)

Difference Interval r Default values are computed

This option defines an interval used to estimate gradients by finite differences in the following
circumstances:

1. For ve.rifying the objective and/or constraint gradients (see the description of Verify, below).

• .
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2. For estimating unspecified elements of the objective gradient or the Jacobian matrix.

In general, a derivative with respect to the j-th variable is approximated using the interval 6j, where
j = r(1 + ij 1), with i the first point feasible with respect to the bounds and linear constraints. If

the functions are well scaled, the resulting derivative approximation should be accurate to 0(r). See
Gill, Murray aid Wright (1981) for a discussion of the accuracy in finite-difference approximations.

If a difference interval is not specified by the user, a finite-difference interval will be computed

automatically for each variable by a procedure that requires up to six calls of CONFUN and OBJFUN

for each component. This option is recommended if the functiou is badly scaled or the user wishes

to have NPSOL determine constant elements in the objective and constraint gradients (see the

descriptions of CONFUN and OBJFUN in Section 4).

% Feasibility Tolerance r Default = ./-

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints

•* .at a "feasible" point; i.e., a constraint is considered satisfied if its violation does not exceed r.

If r < 0, the default value is used. Using this keyword sets both optional parameters Linear
Feasibility Tolerance and Nonlinear Feasibility Tolerance to r. (Additional details are

given below under the descriptions of these parameters.)

Function Precision r Default = co.

This parameter defines ca, which is intended to be a measure of the accuracy with which the

- problem functions F and c can be computed. The value of cR should reflect the relative precision

of 1I+ IF(x)I; i.e., cR acts as a relative precision when IFI is large, and as an absolute precision when

1Fj is small. For example, if F(z) is typically of order 1000 and the first six significant digits are

known to be correct, an appropriate value for cR would be 1.OE-6. In contrast, if F(x) is typically
of order 10 -' and the first six significant digits are known to be corr-ct, an appropriate value for

fR would be 1.OE-1O. The choice of cR can be quite complicated for badly scaled problems; see
Chapter 8 of Gill. Murray and Wright (1981) for a discussion of scaling techniques. The default

"-" value is appropriate for most simple functions that are computed with full accuracy. However,

when the accuracy of the computed function values is known to be significantly worse than full

P. precision, the value of c, should be large enough so that NPSOL will not attempt to distinguish
between function values that differ by less than the error inherent in the calculation.

" Hessian No Default = No
Hessian Yes

This option controls the contents of the upper-triangular matrix R (see Section 3). NPSOL works
exclusively with the transformed and re-ordered Hessian HQ (5), and hence extra computation

is required to form the Hessian itself. If Hessian = No, R contains the Cholesky factor of the
transformed and re-ordered Hessian. If Hessian = Yes, the Cholesky factor of the approximate
Hessian itself is formed and stored in R. The user should select Hessian = Yes if a warm start

.- will be used for the next call to NPSOL.

Infinite Bound Size r Default = 1010

If r > 0, r defines the "infinite" bound BIGBND in the definition of the problem constraints. Any
upper bound greater than or equal to BIGBND will be regarded as plus infinity (and similarly for a

lower bound less than or equal to -BIGBND). If r < 0, the default value is used.

Infinite Step Size r Default = max(BIGBND, 1010)

If r > 0. r specifies the magnitude of the change in variables that is treated as a step to an

* unbounded solution. If the change in x during an iteration would exceed the value of Infinite

%,7
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Step, the objective function is considered to be unbounded below in the feasible regi)n. If r < 0,
the default value is used.

Iteration Limit i Default - max(50, 3(n + m,) + 10rn,) ",

See Major Iteration Limit below.

Linear Feasibility Tolerance rI Default Vf

Nonlinear Feasibility Tolerance r2 Default VC

The scalars r and r 2 define the maximum acceptable absolute violations in linear and nonlinear
- constraints at a "feasible" point; i.e., a linear constraint is considered satisfied if its violation does

not exceed ri, and similarly for a nonlinear constraint and r2 . The default values ar. lised if r, or

r2 is non-positive.

On entry to NPSOL, an iterative procedure is executed in order to find a point that satisfies the
linear constraint and bounds on the variables to within the tolerance rf. All suosequent iterates
will satisfy the linear constraints to within the same tolerance (unless r, is comparable to the
finite-difference interval).

For nonlinear constraints, the feasibility tolerance r 2 defines the largest constraint violation
that is acceptable at an optimal point. Since nonlinear constraints are generally not satisfied
until the final iterate, the value of Nonlinear Feasibility Tolerance acts as a l)artial terzri-
nation criterion for the iterative sequence generated by NPSOL (see the discussion of Optimality
Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example,
if the varial)es and the coefficients in the linear constraints are of order unity, and the latter are
correct to about 6 decimal digits, it would be appropriate to specify r, as 10-6 .

Linesearch Tolerance r Default 0.9

Thc value r (0 < r < 1) controls the accuracy with which the step a taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value
of r, the niore accurate the linesearch). The default value r = 0.9 requests an inaccurate search,
and is appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is
desirable to reduce the number of major iterations-for example, if the objective function is cheap -

to evaluate, or if a substantial number of gradients are unspecified.

Major Iteration Limit i Default = max(50,3(n + m,) + 107n,)
Iteration Limit

Iters

Itns

The value of i specifies the maximum number of major iterations allowed before termination.
Setting i = 0 and Major Print Level > 0 means that the workspace needed will be computed
anti printcd, but no iterations will be performed.

Major Print Level i Default 10
Print Level .

The value of i controls the amount of printout produced by the major iterations of NPSOL. (See
also Minor Print Level, below). The levels of printing available are indicated below.

.°
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i Output

0 No output.

1 The final solution only.
-e 5 One line of output for each majo" iteration (no printout of the final solution).

> 10 The final solution and one line of output for each iteration.

> 20 At each major iteration, the objective function, the Euclidean norm of the
nonlinear constraint violations, the values of the nonlinear constraints (the
array c), the values of the linear constraints (the array ALz), and the current
values of the variables (the array z).

> 30 At each major iteration, the diagonal elements of the matrix T associated with
the TQ factorization (4) of the QP working set, and the diagonal elements of
R, the triangular factor of the transformed and re-ordered Hessian (5).

Minor Iteration Limit i Default max(50,3(n + 7nL + inN))

The value of i specifies the maximum number of iterations for the optimality phase of each QP
subproblem.

Minor Print Level i Default = 0

The value of i controls the amount of printout produced by the minor iterations of NPSOL, i.e., the
iterations of the quadratic programming algorithm. (See also Major Print Level, above.) Thehfollowing levels of printing are available.

Output

0 No output.

1 The final QP solution.

P 5 One line of output for each minor iteration (no printout of the final QP solu-

tion).

> 10 The final QP solution and one brief line of output for each minor iteration.

> 20 At each minor iteration, the current estimates of the QP multipliers, the current
estimate of the QP search direction, the QP constraint values, and the status

"" of each QP constraint.

> 30 At each minor iteration, the diagonal elements of the matrix T associated with
the TQ factorization (4) of the QP working set, and the diagonal elements of
the Cholesky factor R of the transformed Hessian (5).

Nonlinear Feasibility Tolerance r Default Ve-

*" See Linear Feasibility Tolerance, above.

Optimality Tolerance r Default = c° '

The parameter r (e, < r < 1) specifies the accuracy to which the user wishes the final iterate to
approximate a solution of the problem. Broadly speaking, r indicates the number of correct figures
desired in the objective function at the solution. For example, if r is 10- 6 and NPSOL terminates

• . .successfully, the final value of F should have approximately six correct figures.

..................
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NSOL will terminate successfully if the iterative sequence of x-values is judged to have con-
verged and the final point satisfies the first-order Kuhn-Tucker conditions (see Section 2). The
sequence of iterates is considered to have converged at x if

"-' llPll < v'(1 + Ilxll), (15a) ,- .

wherc p is the search direction and a the step length from (2). An iterate is considered to satisfy

tle first-order conditions for a minimum if ft

IIZT < v(l + max(1 + oF(f), wiesec)) (15b)

Rnct Default .

I resj I< tot for all j, (1 5c) "

whre Z g,, is the projected gradient (see Section 2), g,,, is the gradient of F() with respect".-

t,, tie free variables, r(,sj is the violation of the j-th active nonlinear constraint, and ftol is the ""

Nonlinear Feasibility Tolerance.'.

""Start Objective Check At Variable k Default = I -

Start Constraint Check At Variable k Default 1

Stop Objective Check At Variable lDefault = n
Stop Constraint Check At Variable lDefault = n

Tese keywords take effect only if Verify level > 0 (see below). They may be used to control
the verification of gradient elements computed by subroutines OBJFUN and CONFUN. For example,
if the first 30 components of the objective gradient appeared to be correct in an earlier run, so
that only component 31 remains questionable, it is reasonable to specify Start Objective Check

At Column 31. If the first 30 variables appear linearly in the objective, so that the corresponding

gradient elements are constant, the above choice would also be appropriate.

Verify Level i Default = 0

Verify No

Verify Level -1

Verify Level 0

Verify Objective Gradients -

Verify Level

Verify Constraint Gradients

Verify Level 2

Verify

Verify Yes

Verify Gradients

Verify Level 3

"['hest, keywords refer to finite-difference checks on the gradient elements computed by the user-

prvid,,d subroutines OBJFUN and CONFUN. (Unspecified gradient components are not checked.) It

,. is possible to specify Verify Levels 0-3 in several ways, as indicated above. For example, the

znonlineair objective gradient (if any) will be verified if either Verify Objective or Verify Level

%°
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1 is specified. Similarly, the objective and the constraint gradients will be verified if Verify Yes
or Verify Level 3 or Verify is specified.

If 0 < i < 3, gradients will be verified at the first point that satisfies the linear constraints and
bounds. If i = 0, only a "cheap" test will be performed, requiring one call to OBJFUN and one call
to CONFUN. If 1 < i < 3, a more reliable (but more expensive) check will be made on individual

gradient components, within the ranges specified by the Start and Stop keywords described above.
A result of the form "OK" or "BAD?" is printed by NPSOL to indicate whether or not each component

tP appears to be correct.
If 10 < i < 13, the action is the same as for i - 10, except that it will take place at the

user-specified initial value of z.
We suggest that Verify Level 3 be specified whenever a new function routine is being de-

veloped.

5.3. Optional parameter checklist and default values

For easy reference, the following sample NPOPTN list shows all valid keywords and their default
values. The default options Function Precision, Linear Feasibility Tolerance, Nonlinear
Feasibility Tolerance and Optimality Tolerance depend upon e, the relative precision of the
machine being used. The values given here correspond to double precision arithmetic on IBM
360 and 370 systems and their successors (e ; 2.22 x 10-6). Similar values would apply to any
machine having about 16 decimal digits of precision.

* List of optional parameters.

Central Difference Interval ? * Computed automatically
Cold Start *

Crash Tolerance .01
Derivative Level 3 "
Difference Interval ? Computed automatically
Function Precision 8.2E-15 e0.9

Hessian No *
Infinite Bound I.OE+10 * Plus infinity
Infinite Step i.OE+10 *
Linear Feasibility Tolerance 1.5E-8 *V.

Linesearch Tolerance 0.9 *
Major Iteration Limit 60 * or 3(n + m) + lON

Major Print Level 10 *
Minor Iteration Limit s0 * or 3(n + m, + m)
Minor Print Level 0 *
Nonlinear Feasibility Tolerance 1.S-8 * Vt.
Optimality Tolerance 6.4E-12 * o.8

Start Objective Check 1
Start Constraint Check I *
Stop Objective Check ? * n
Stop Constraint Check ?* n

Verify Level 0 * Cheap test
L|

.4.*..,... ° --. . . . . . . . . .
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6. DESCRIPTION OF THE PRINTED OUTPUT

The level of printed output from NPSOL is controlled by the user (see the descriptiiiis of Major "r.
Print Level and Minor Print Level in Section 5.2). If Minor Print Level > 0, output is
obtained from the subroutines that solve the QP subproblem. For a detailed description of this !.
information the reader should refer to the user's guide for LSSOL (Gill et al., 1986a).

When Major Print Level > 5, the following line of output is produced at every major
iteration of NPSOL. In all cases, the values of the quantities printed are those in effect on completion q
of the given iteration.

Itn is the iteration count.

ItQP is the sum of the iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, ItqP will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near
the solution (see Section 2).

Note that ItqP may be greater than the Minor Iteration Limit if some it-
erations are required for the feasibility phase. .

Step is the step a taken along the computed search direction. On reasonably well-
behaved problems, the unit step will be taken as the solution is approached.

Nfun is the cumulative number of evaluations of the objective function needed for :
the linesearch. Evaluations needed for the estimation of the gradients by finite 9,

differences are not included. Nf un is printed as a guide to the amount of work
required for the linesearch.

Merit is the value of the augmented Lagrangian merit function (11) at the current
iterate. This function will decrease at each iteration unless it was necessary '

to increase the penalty parameters (see Section 2.2). As the solution is ap-
proached, Merit will converge to the value of the objective function at the 6'-

solution.

If the QP subproblem does not have a feasible point (signified by "I" at the
end of the current output line), the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence
of major iterations with infeasible subproblems, the sequence of Merit values
will decrease monotonically until either a feasible subproblem is obtained or
NPSOL terminates with INFORM = 3 (no feasible point could be found for the
nonlinear constraints).

If no nonlinear constraints are present (i.e., NCNLN = 0), this entry contains
Objective, the value of the objective function F(x). The objective function
will decrease monotonically to its optimal value when there are no nonlinear
constraints.

Bnd is the number of simple bound constraints in the predicted active set. . ',.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed .*

if NCNLN is zero).

Nz is the number of columns of Z (see Section 2.1). The value of Nz is the number
of variables minus the number of constraints in the predicted active set; i.e.,

Nz = N - (Bnd + Lin + Nln).

-. -.. -. -,,.'...............-....-..,...-.........,.......,....-..-.... . , . . -:, , o,, -, ,, .
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Norm Gf is the Euclidean norm of g,, the gradient of the objective function with respect
to the free variables, i.e., variables not currently held at a bound.

Norm Gz is IIZTgF,,RI, the Euclidean norm of the projected gradient (see Section 2.1).
Norm Gz will be approximately zero in the neighborhood of a solution.

Honi

Cond H is a lower bound on the condition number of the Hessian approximation H.
' Cond Hlz is a lower bound on the condition number of the projected Hessian approxima-

tion H, (H, = ZTHFRZ = RTR; see (5) and (10) in Section 2). The larger
this number, the more difficult the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Norm C is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Norm C will be approximately
zero in the neighborhood of a solution.

Penalty is the Euclidean norm of the vector of penalty parameters used in the aug-

mented Lagrangian merit function (not printed if NCNLN is zero).

Conv is a three-letter indication of the status of the three convergence tests (15a)-
(15c) defined in the description of the optional parameter Optimality Toler-
ance in Section 5. Each letter is "T" if the test is satisfied, and "F" otherwise.
The three tests indicate whether: (a) the sequence of iterates has converged;
(b) the projected gradient (Norm Gz) is sufficiently small; and (c) the norm of
the residuals of constraints in the predicted active set (Norm C) is small enough.

If any of these indicators is "F" when NPSOL terminates with INFOR = 0, the

user should check the solution carefully.

N - is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive-definite (see Section 2.3).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective
and constraint gradients. If the value of Step is zero, the switch to central
differences was made because no lower point could be found in the linesearch.
(In this case, the QP subproblem is re-solved with the central-difference gra-
dient and Jacobian.) If the value of Step is non-zero, central differences were
computed because Norm Gz and Norm C imply that I is close to a Kuhn-Tucker

-" point.

When Major Print Level = 1 or Major Print Level > 10, the summary printout at the
.1 * end of execution of NPSOL includes a listing of the status of every variable and constraint. Note

that default names are assigned to all variables and constraints.
The following describes the printout for each variable.

* Variable gives the name (VARBL) and index j (j = 1 to N) of the variable.

" State gives the state of the variable in the predicted active set (FR if neither bound is
in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper
bound). If the variable is predicted to lie outside its upper or lower bound by
more than the feasibility tolerance, State will be "++" or "--" respectively.
(The latter situation can occur only when there is no feasible point for the
bounds and linear constraints.)

,-... :-......:.: .-..:-..'.......-....:-.,... -.....--..... :........,....-.....-,.-.... ;....-:..........-...............,.....-.....-...-......... -....-,.....-..........-.
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Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable. ("None" indicates that BL(j) <n
-BIGBND.) "

Upper bound is the upper bound specified for the variable. ("None" indicates that BU(j) >
BIGBND.) S

Lagr multiplier is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR. If X is optimal, the multiplier should be non-negative
if State is LL, and non-positive if State is UL.

Residual is the difference between the variable "Value" and the nearer of its bounds
BL(j) and BU(j).

The printout for general constraints is the same as for variables, except for the following:

Linear constr is the name (LNCON) and index i (i 1 to NCLIN) of a linear constraint.

Nonlnr constr is the name (NLCON) and index i (i = 1 to NCNLN) of a nonlinear constraint. "'

l

.
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7. INTERPRETATION OF THE RESULTS ,7

7. INTERPRETATION OF THE RESULTS

The input data for NPSOL should always be checked (even if NPSOL terminates with the value
INFORM = 0!). Two common sources of error are uninitialized varial)Ies and incorrect gradients, b e

which may cause underflow or overflow on some machines. The user should check that all compo-
nents of A, BL, BU and X are defined on entry to NPSOL, and that OBJFUN and CONFUN compute all

relevant components of OBJGRD, C and CJAC.
In the following, we list the different ways in which NPSOL is terminated and discuss what

further action may be necessary.

Termination Discussion and Recommended Action

Underflow A single underflow will always occur if machine constants are computed automat-
ically (as in the distributed version of NPSOL; see Section 8). Other floating-point
underflows may occur occasionally, but can usually be ignored.

Overflow If the printed output before the overflow error contains a warning about seri-
ous ill-conditioning in the working set when adding the j-th constraint, it may

, "be possible to avoid the difficulty by increasing the magnitude of the optional
parameter Linear Feasibility Tolerance or Nonlinear Feasibility Toler-

ance, and rerunning the program. If the message recurs even after this change, the

offending linearly dependent constraint (with index "j") must be removed from

the problem. If overflow occurs in one of the user-supplied routines (e.g., if the

nonlinear functions involve exponentials or singularities), it may help to specify
tighter bounds for some of the variables (i.e., reduce the gap between appropriate
tI and uj). If overflow continues to occur for no apparent reason, contact theauthors at Stanford University.""

* INFORM = 0 The iterates have converged to a point X that satisfies the first-order Kuhn-Tucker
conditions to the accuracy requested by the optional parameter Optimality tol-
erance (see Section 5.2), i.e., the projected gradient and active constraint residuals

* are negligible at X.

The user should check whether the following four conditions are satisfied: (i) the
final value of Norm Gz is significantly less than that at the starting point; (ii)
during the final major iterations, the values of Step and ItQP are both one; (iii)
the last few values of both Norm Gz and Norm C become small at a fast linear rate;
and (iv) Cond Hz is small. If all these conditions hold, X is almost certainly a local

- minimum of NP. (See Section 9 for a specific example.)

• INFORM = 1 The point X satisfies the Kuhn-Tucker conditions to the accuracy requested, but
the sequence of iterates has not yet converged. NPSOL was terminated because no
further improvement could be made in the merit function.

L. This value of INFORM may occur in several circumstances. The most common

situation is that the user asks for a solution with accuracy that is not attainable
." with the given precision of the problem (as specified by Function Precision; see

Section 5.2). This condition will also occur if, by chance, an iterate is an "exact"

Kuhn-Tucker point, but the change in the variables was significant at the previous
iteration. (This situation often happens when minimizing very simple functions,
such as quadratics.)

If the four conditions listed above for INFORM = 0 are satisfied, X is likely to be a
solution of NP regardless of the value of INFORM.

Lq%



28 (Ifer'. (tuide for NI'SOL 4.0 ', .

INFORM = 2 NPSOL has terminated without finding a feasible point for the linear constraints
and bounds. which means that no feasible point exists for the given value of Linear U
Feasibility Tolerance. The user should check that there are no constraint ,
redundancies. If the data for the constraints are accurate only to an absolute,!
precision a, the user should ensure that the value of the optional parameter Linear
Feasibility Tolerance is greater than a. For example, if all elements of A are of
order unity and are accurate to only three decilual places, Linear Feasibility
Tolerance should be at least 10-3.

INFORM 3 There has been a sequence of QP subproblems for which no feasible point could"
be found (indicated by "I" at the end of each terse line of output). This behavior
will occur if there is no feasible point for the nonlinear constraints. (However.
there is no general test that can determine whether a feasible point exists for a set L&
of nonlinear constraints.) If the infeasible subproblems occur from the very first
major iteration, it is highly likely that no feasible point exists. If infeasibilities
occur when earlier subproblems have been feasible, small constraint inconsistencies "
may be present. The user should check the validity of constraints with negative
values of ISTATE. If the user is convinced that a feasible point does exist, NPSOL e

should be restarted at a different starting point. &

INFORM = 4 If the algorithm appears to be making progress, Major Iteration Limit may be
too small. If so, increase its value and rerun NPSOL (possibly using the Warm
Start option). If the algorithm seems to be "bogged down", the user should check
for incorrect gradients or ill-conditioning as described below under INFORM = 6.

Note that ill-conditioning in the working set is sometimes resolved automatically
by the algorithm, in which case performing additional iterations may be helpful.
However, ill-conditioning in the Hessian approximation tends to persist once it
has begun, so that allowing additional iterations without altering R is usually in-
advisable. If the quasi-Newton update of the Hessian approximation was modified - .

during the latter iterations (i.e., an "M" occurs at the end of eachi terse line), it
may be worthwhile to try a warm start at the final point as suggested above.

INFORM = 6 A sufficient decrease in the merit function could not be attained during the final"'-
linesearch. This sometimes occurs because an overly stringent accuracy has been
requested, i.e., Optimality Tolerance is too small. In this case the user should
apply the four tests described under INFORM = 0 above to determine whether '.
or not the final solution is acceptable (see Gill, Murray and Wright, 1981, for a
discussion of the attainable accuracy). 7

If many iterations have occurred in which essentially no progres.a has been made,
or NPSOL has failed completely to move front the initial point, subroutines OBJFUN
or CONFUN may be incorrect. The user should refer to the comments below under
INFORM = 7 and check the gradients using the Verify parameter. Unfortunately,
there may be small errors in the objective and constraint gradients that cannot
be detected by the verification process. Finite-difference approximations to first
derivatives are catastrophically affected by even small inaccuracies. An indication
of this situation is a dramatic alteration in the iterates if the finite-difference
interval is altered. One might also suspect this type of error if a switch is made to
central differences even when Norm Gz and Norm C are large.

Another possibility is that the search direction has become inaccurate because of
ill-conditioning in the Hessian approximation or the matrix of constraints in the '
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working set; either form of ill-conditioning tends to be reflected in large values of

ItQP (the number of iterations required to solve each QP subproblem).

If the condition estimate of the projected Hessian (Cond Hz) is extremely large,

it may be worthwhile to rerun NPSOL from the final point with the Warm Start
option. In this situation, ISTATE should be left unaltered and R should be reset to
the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is
extremely large), it may be helpful to run NPSOL with a relaxed value of the

Feasibility Tolerance. (Constraint dependencies are often indicated by wide
variations in size in the diagonal elements of the matrix T, whose diagonals will
be printed for Major Print Level > 30.)

INFORM 7 Large errors were found in the derivatives of the objective function and/or nonlin-
ear constraints. This value of INFORM will occur if the verification process indicated
that at least one gradient or Jacobian component had no correct figures. The user
should refer to the printed output to determine which elements are suspected to
be in error.

As a first step, the user should check that the code for the objective and constraint
values is correct-for example, by computing the function at a point where the
correct value is known. However, care should be taken that the chosen point fully
tests the evaluation of the function. It is remarkable how often the values x = 0 or

x = I are used to test function evaluation procedures, and how often the special
properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function
involves subsidiary data communicated in COMMON storage. Although the first
evaluation of the function may be correct, subsequent calculations may be in error
because some of the subsidiary data has accidentally been overwritten.

Errors in programming the function may be quite subtle in that the function
value is "almost" correct. For example, the function may not be accurate to full
precision because of the inaccurate calculation of a subsidiary quantity, or the
limited accuracy of data upon which the function depends. A common error on
machines where numerical calculations are usually performed in double precision
is to include even one single-precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the
correct figures may be lost by such a seemingly trivial error.

INFORM = 9 An input parameter is invalid. The user should refer to the printed output to
determine which parameter must be re-defined.

a;.
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8. IMPLEMENTATION INFORMATION

8.1. Format of the distribution tape
', The source code and example program for NPSOL are distributed on a magnetic tape containing

12 files. The tape characteristics are described in a document accompanying the tape; normally
they are 9 tra.k, 1600 bpi, unlabeled, ASCII, 80-character records (card images), 4800-character
blocks.

The following is a list of the files and a summary of their contents. For reference purposes we
give a name to each file. However, the names will not be recorded on unlabeled tapes. The MACH,

"I LSCODE and NPCODE files are composed of several smaller source files described in Section 8.3.

File Name Type Cardst Description

1. DPMACH FORTRAN 450 Double-precision source file 1: MCSUBS
2. DPLSCODE FORTRAN 8250 Double-precision source files 2-5: BLAS,.. .,OPSUBS

3. DPNPCODE FORTRAN 6880 Double-precision source files 6-8: CHSUBS,..., SRSUBS
4. DPLSMAIN FORTRAN 260 Double-precision source file LSMAIN
5. DPNPMAIN FORTRAN 500 Double-precision source file NPMAIN
6. LSMAIN DATA 6 Options file for LSMAIN
7. NPMAIN DATA 14 Options file for NPMAIN
8. SPMACH FORTRAN 450 Single-precision source file 1
9. SPLSCODE FORTRAN 8250 Single-precision source files 2-5

10. SPNPCODE FORTRAN 6880 Single-precision source files 6-8
11. SPLSMAIN FORTRAN 260 Single-precision version of file 4
12. SPIIPMAIN FORTRAN 500 Single-precision version of file 5

t Approximate figure.

One MACH, one LSCODE and one NPCODE file should be selected for any given installation.
DPMACH, DPLSCODE and DPNPCODE are intended for machines that generally require double precision
computation. Examples include IBM Systems 360, 370, 3033, 3081, etc.; Amdahl 470, Facom,
Fujitsu, Hitachi, and other systems analogous to IBM; DEC VAX systems; Data General MV/8000;

. GICL 2900 series; recent PRIME systems; DEC Systems 10 and 20; Honeywell systems; and the
Univac 1100 series.

SPMACH. SPLSCODE and SPNPCODE are intended for machines for which single precision is suit-
ably accurate for numerical computation. Examples include the Burroughs 6700 and 7700 series;
the CDC 6000 and 7000 series and their Cyber counterparts; and the Cray-1 and Cray-2.

. 8.2. Installation procedure

, 1. Obtain the appropriate MACH, LSCODE and NPCODE files from the tape.
2. If necessary, edit the subroutine MCHPAR according to Section 8.5.
3. Decide whether or not to split the LSCODE and NPCODE tape files into source files BLAS through

SRSUBS as suggested in Section 8.3.
" 4. Compile all the routines that were originally in the LSCODE and NPCODE files together with

those from MACH. Run them in conjunction with the main program NPMAIN from either file 5
or file 12. Check the output against that in Section 9.

b"f

d"U
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8.3. Source files

NPSOL has been written in ANSI (1977) Fortran and tested on an IBM 3081K computer using the
IBM Fortran 77 compiler VS Fortran. Certain unavoidable machine dependencies are confined to,-
the routine MCHPAR. "

Y The source code is divided into 8 logical parts. For ease of handling, these are combined into
the MACH, LSCODE and NPCODE files on the distribution tape, but for subsequent maintenance we
recommend that 8 separate files be kept. In the description below we suggest a name for each
file and summarize its purpose. We then list the names of the Fortran subroutines and functions
involved. The naming convention should minimize the risk of a clash with user-written routines.

File 1. MCSUBS Computation of machine-dependent constants.

MCHPAR MCEPS MCENVI MCENV2 MCSTOR

File 2. BLAS Basic Linear Algebra Subprograms (a subset).

DASUM DAXPY DCOPY DDOT DNIM2 DSWAP DSCAL IDAMAX

These routines are functionally similar to members of the BLAS package (Lawson et al.,
1979). If possible they should be replaced by authentic BLAS routines. (Versions may
exist that have been tuned to your particular machine.)

DGEMV DGER1
These routines are functionally similar to members of the Level 2 BLAS packages (Don-
garra et al., 1985).

DCOND DDIV DDSCL DLOAD DNORM DSSQ DSWAP ICOPY
IDRANK ILOAD
These are additional utility routines that could be tuned to your machine. DLOAD is used
the most frequently, to load a vector with a constant value.

DROT3 DROT3G DGEAPQ DGEQR DGEQRP DGRFG

These linear algebra routines are used to compute and update various matrix factoriza-
tions in NPSOL.

. File 3. CMSUBS General utility routines.

CMALF CMALFi CMCHK CMFEAS CMPRT CMQMUL CMRSOL CMRSWP
CMRIMD CMTSOL

File 4. LSSUBS Least-squares routines.

LSADD LSADDS LSBNDS LSCHOL LSCORE LSCRSH LSDEL LSDFLT
LSFEAS LSFILE LSGETP LSGSET LSKEY LSLOC LSMOVE LSMULS
LSOPTN LSPRT LSSETX LSSOL

File 5. OPSUBS Option string handling routines.

OPFILE OPLOOK OPNUM OPSCAN OPTOKN OPUPPR

File 6. CHSUBS Derivative checking routines.

CHCORE CHFD CHKGRD CHKJAC

"t W I - .7 - " ' L. . " " ' 
'
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File 7. NPSUBS Nonlinecar optimization routines.

NPCHKD NPCORE NPCRSH NPDFLT NPFEAS .NPFILE NPGQ NPIQP

Fie NPKEY NPLOC NPMRT NPOPTN NPPRT NPSETX NPSRCH NPUPDT

Fie8. SRSUBS Lizicsearch routines.

SRCHQ SRCHC

* 8.4. Comimon blocks

Certaiin Fortran COMMON blocks are used in the NPSOL source code to communicate between sub-
ro~utines. T[heir natnes are listed below.

CMDEBG LSDEBG NPDEBG LSPAR1 LSPAR2 NPPARI NPPAR2 SOL1CII
SOL3CM SOL4CM SOLSCM SOL6CM SOLMCH SOL1NP SOL4NP SOLSNP
SOL6NP SOL7NP SOLILS SOL3LS SOL1SV

8.5. Machine-dependent subroutines

The route MCHPAR in the MACH file may require modification to suit a particular machine or a
* fl~~oI-s~tmda~rd app~lication.

At the beginning of NPSOL, MCHPAR is called to assign the machine- dependent constants and
* the standard input andl output unit numbers. These parameters are stored in the array WMAC(15)

in the labeled COMMON block SOLMCH, and are defined as follows.

WMACH(l) is NEASE, the base of floating-point arithmetic.

* WMACH(2) is NDIGIT, the number of NEASE digits of precision.
WMACH(3) is EPS, the floating-point precision.

WMACH(4) is RTEPS, the square root of EPSMCH.

WMACH(5) is RMIN, the smallest positive floating-point number.

WMACH(6) is RTMIN, the square root of RHIN.

WMACH(7) is RMAX. the largest positive floating-point number.

WMACH(8) is RTMAX, the square root of RMAX.

WMACH( 10) is NIN, the file number for the input stream.

WMACH(l 1) is NOUT, the file number for the output stream.

Withiin routine MCHPAR, the machine constants are set in one of two ways, depending upon the
- value of the logical variable HDWIRE, which is set in-line.

If HDWIRE is .FALSE. (thme value set for the distributed copy of MCHPAR), the machine constants
* a~~tre coemiputed amtoiiutivally for the machine being used. If HDWIRE is .TRUE. , machine constants .

* appropriate for thie IBM 360/370 Series are assignedl directly to the elements of WMACH. ~
Before selecting thme miethod of assigning the Machine constants, you should note the following.

The comuputat ion of thme mrachine constants will always generate a single arithmetic underfiow, and -

hence somne appropriate remedial action may need to be taken if your machine traps underfiow.
7 If you wish to implement the in-line assignment of machine constants for a machine other than

one from tlic IBM 3601/370) Series. MCHPAR must be modified as follows.
*1. Change thle in-line assignment of HDWIRE from .FALSE. to .TRUE..
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2. Set tihe values of WMACH appropriate for the mnatchine and precision being used. The values of
~NBASE, NDIGIT, EPSMCH, RMIN and RMAX for several machines are given in the following table,

2.for both single and double precision; RTEPS, RTKIN and RTHAX may be computed using Fortran

statements. The values NIN and NOUT depend on the machine installation.
For each precision, we give two values for EPSMCK, RHIN and RMAX. The first value is a For-

tran decimal approximation of the exact quantity; use of this value in MCHPAR should cause .

no difficulty except in extreme circumstances. The second value is the exact mathematical

representation.

Table of machine-dependent parameters

IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax

N,-,ESingle Single Single Single Single

NBASE 16 2 2 2 2

NDIGIT 6 48 27 27 24

EPS 9.54E-7 7.11E-15 7.46E-9 1.60E-8 1.20E-7

16-" 2- 47  2-27 2-26 2-23

RMIN 1.OE-78 1.OE-293 i.OE-38 1.OE-38 1.OE-38

16-5 -'~ -129 2-129 2-128

.HAX 1.OE+75 1.OE+322 1.0E+38 1.0E+38 1.0E+38
1663 (1-16 - 6) 21070'(1.-2 -46 2 12 (1-2 -27) 2 227;(1 -2 -27 2 27" (1-2-2)

IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax

Double Double Double Double Double

. NBASE 16 2 2 2 2

NDIGIT 14 96 62 61 56 V,.q

EPS 2.22D-16 2.63D-29 2.17D-19 8.68D-19 2.78D-17 V.

16-13 2-95 2-62 2-60 2-ss A

RHIN 1.0D-78 I.OD-293 1.OD-38 1.0D-308 1.OD-38

16-65 2-'7 2-129 2-1025 2- 128

RMAX 1.0D+75 1.01+322 1.01+38 1.01+307 1.0D+38
',,."" 16ss ( -16 - ,) 2oo I2- ) 21t (I- 2-96)  2os (1-2-s-2 2' I -2-56) -

.

. .. .. . , - . . - , . . . -. ... . _ ... . f. -. . : ..G
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9. EXAMPLE PROBLEM %

This section describes one version of the so-called "hexagon" problem (a different formulation is U
given as Problem 108 in Hock and Schittkowski, 1981). The problem is to determine the hexagon
of maximum area such that no two of its vertices are more than one unit apart (the solution is not
a regular hexagon). The corresponding sample main program and output from NPSOL are given
in the Appendix.

All constraint types are included (bounds, linear, nonlinear), and the Hessian of the Lagrangian
function is not positive definite at the solution. The problem has nine variables, non-infinite bounds
on seven of the variables, four general linear constraints, and fourteen nonlinear constraints.

The objective function is r.

F(:) = -:2:6 + XIX7 - - XS + :4X9 + :3s.-

• 'The bounds on the variables are

X 10 - 1 <X3 1, 5 >0, X6>0, X>0, s_:<0, and :9<0.

Thus,
t. =( 0, -00, -1, -00, 0, 0, 0, -00,--O)T

l= (cc, 00, 1, 00, 00, 00, 00, 0, 0).. "

The general linear constraints are

Z2 -z X_0, X-32X_0, X3-X4_0, and Z4-Z5 >0..

Hence,

IL=(0) ,1 1 0 0 0 0 0 0 0 and U 0=().

0 0 0 1 -1 0 0 0 0 0 0L
0 0 0 1 -1 0 0 0 0 0.

The nonlinear constraints are all of the form ci(x) < 1, for i = 1,..., 14; hence, all components
of tN are -oo, and all components of UN are 1. The fourteen functions {ci(x)} are

c1) = 1 + , C2(X) =(2 - :)" + (, - .

C3(X) = (:-3 - 6) C4 c(--) =(-T --4)2 + (-T6-
cS(T) = (X _ :S)2 + (Z6 :9)2, C6 (:) = : + :2 .

c7(X) = (:3 - :2)2 + :C cs(:) = (:4 - :2)2 + ( 07 - 7)2,

c9(:) = (X2 2 )2 + (7 - X9)', CIo(X) = (:4 - X3)" + 8,CII( X) = X - ,) X3 ; C 2( X) = -4 + zi "-a'"

c13( ) = (, - :5)2 + (:9 - :s)2, c14 () = : + 9.

An optimal solution (to five figures) is U

= (.060947, .59765, 1.0, .59765, .060947, .34377, .5, -. 5, -. 34377 )T. -

o. - .* ..
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and F(x*) = -1.34996. (The optimal objective function is unique, but is achieved for other values
of x.) Five nonlinear constraints and one simple bound are active at . The sample solution output
is given later in this section, following the sample main program and problem definition.

Two calls are made to NPSOL in order to demonstrate some of its features. For the first call,
the starting point is:

o= (.1, .125, .666666, .142857, .111111, .2, .25, -. 2, -. 25 )T.

All objective and constraint derivatives are specified in the user-provided subroutines OBJFN1 and
CONFN1, i.e., the default option Derivative Level = 3 is used.

On completion of the first call to NPSOL, the optimal variables are perturbed to produce
the initial point for a second run in which the problem functions are defined by the subroutines
OBJFN2 and CONFN2. To illustrate one of the finite-difference options in NPSOL, these routines are
programmed so that the first six components of the objective gradient and the constant elements of
the Jacobian matrix are not specified; hence, the option Derivative Level = 0 is chosen. During
computation of the finite-difference intervals, the constant Jacobian elements are identified and

S'.set, and NPSOL automatically increases the derivative level to 2.
The second call to NPSOL illustrates the use of the Warm Start option to utilize the final

active set, nonlinear multipliers and approximate Hessian from the first run. Note that Hessian

= Yes was specified for the first run so that the array R would contain the Cholesky factor of the
approximate Hessian of the Lagrangian.

The two calls to NPSOL illustrate the alternative methods of assigning default parameters. For
the first run, the parameters are read from the options file NPMAIN DATA supplied on the distribution
tape. In the second run, the parameters are modified using calls to subroutine NPOPTN. (There is
no special significance in the order of these assignments; an options file may just as easily be used
to modify parameters set by NPOPTN.)

The results are typical of those obtained from NPSOL when solving well behaved (non-trivial)
nonlinear problems. The approximate Hessian and working set remain relatively well-conditioned.
Similarly, the penalty parameters remain small and approximately constant. The numerical results

.* illustrate much of the theoretically predicted behavior of a quasi-Newton SQP method. As z
approaches the solution, only one minor iteration is performed per major iteration, and the "Norm
Gz" and "Norm C" columns exhibit the fast linear convergence rate mentioned in Sections 6 and 7.
Note that the constraint violations converge earlier than the projected gradient. The final values of
the projected gradient norm and constraint norm reflect the limiting accuracy of the two quantities.
It is possible to achieve almost full precision in the constraint norm but only half precision in the
projected gradient norm. Note that the final accuracy in the nonlinear constraints is considerably

- better than the feasibility tolerance, because the constraint violations are being refined during the

last few iterations while the algorithm is working to reduce the projected gradient norm. In this

problem, the constraint values and Lagrange multipliers at the solution are "well balanced", i.e.,
all the multipliers are approximately the same order of magnitude. This behavior is t pical of a
well-scaled problem.

.

tP'

A'........................................................... ~ ......................................



36 User's Guide for NPSOL 4.0

%.J1

10. REFERENCES V
Dennis, .1. E., Jr. and Mor6, J. J. (1977). Quasi-Newton methods, motivation and theory, SIAM

Review 19, pp. 46-89.

Dennis, .1. E., ,Jr. and Schnabel, R. B. (1981). "A new derivation of symmetric positive definite
secant updates", in Nonlinear Programming 4 (0. L. Mangasarian, R. R. Meyer and S. M.
Robinson, eds.), pp. 167-199, Academic Press, London and New York.

Dennis, J. E., ,Jr. and Schnabel, R.. B. (1983). Numerical Methods lbr Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Dongarra. .1. J., Du Croz, J. J., Hamiarling, S. J. and Hanson, R. J. (1985). A proposal for an
extended set of Fortran basic linear algebra subprograms, SIGNUM Newsletter 20, 1, 2 -18.

Fletcher, R. (1981). Practical Methods of Optimization, Volume 2, Constrained Optimization, John
Wiley and Sons, New York and Toronto.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984a). User's guide for SOL/QPSOL
Version 3.2, Report SOL 84-5, Department of Operations Research, Stanford University, Calif-
ornia.

Gill. P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984b). Procedures for optimization
problemfs with a mixture of bounds and general linear constraints, ACM Transactions on
Mathenatical Software 10, pp. 282-298.

Gill, P. E., Murray. W., Saunders, M. A. and Wright, M. H. (1986a). User's guide for LSSOL
(Version 1.0), Report SOL 86-1, Department of Operations Research, Stanford University,
California.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986b). Properties of an augmented
Lagrangian merit function for inequality constraints, SOL Report (to appear), Department of
Operations Research, Stanford University, California.

Gil!, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986c). A sequential quadratic
programming method for nonlinear optimization, SOL Report (to appear), Department of
Operations Research, Stanford University, California.

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, London
and New York.

thock. W. and Schittkowski, K. (1981). Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Mathematical Systems 187, Springer-Verlag, Berlin and New York.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). Basic linear algebra -

subprograms for Fortran usage, ACM Transactions on Mathematical Software 5, pp. 308-
325.

Murtagh, B. A. and Saunders, M. A. (1982). A projected Lagrangian algorithm and its implemen-
tation for sparse nonlinear constraints, Math. Prog. Study 16, pp. 84-118.

Murtagh. B. A. and Saunders, M. A. (1983). MINOS 5.0 User's Guide, Report SOL 83-20, Depart-
inent ,f Operations Research, Stanford University, California.

Powell. M..1.D. (1974). "Introduction to constrained optimization", in Numerical Methods for Con-
strained Optimization (P. E. Gill and W. Murray, eds.), pp. 1 -28, Academic Press, London
and New York.

Powell. M. .1. D. (1983). "Variable metric methods for constrained optimization", in Mathematical .-
Programming: The State of the Art, (A. Bachem, M. Gr~itschel and B. Korte, eds.), pp. 288--
311, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo.

i ar ma



_- _b. . -k .- L , .ZY YWI :. : FU, FWV . - , -~aWI - L i .M M 2Ml _ h.= M. _ V.:

APPENDIX. SAMPLE PROGRAM AND OUTPUT 57

APPENDIX. SAMPLE PROGRAM AND OUTPUT

2 FILE NPMAIN FORTRAN

4 Sample program for NPSOL Version 4.0 February 1986.
...... sI+++++ *+S+ + ...... ......

6
7 IMPLICIT DOUBLE PRECISION( A-H ,O-Z)

9 * Set the declared array dimensions.
10 * HROWA t the declared row dimension of A.
II * NROWJ = the declared row dimension of CJAC.

. 12 * h. CWR = the declared row dimension of R.
13 * MAXH = maximum no. of variables allowed for.
14 * MAXBD = maximum no. of variables + linear & nonlinear constrnts.
15 * LIf!ORK t the length of the integer work array.
16 * LWORK = the length of the double precision work array.

E-..

18 PARAMETER (hRONA 5, NROMJ 20, NRO1' 10,
19 $ MAXN 9, LIW.'ORK = 70, LWORK 1 1000,
20 $ KAXB.%D = ?A)O + NROI4A 4 NRO14)
21
22 INTEGER ISTATE(IIXBN0)
23 INTEGER IVORK,(LIWORK)
24 DOUBLE PRECISION A(ROWAdIAXN)
25 DOUBLE PRECISION EL(MAXBE), BU(MAXBNO)
'.6 DOUBLE PRECISION C(NROWJ), CJAC(NRONJ,IAXN), CLAMDA(IAXBNO)
27 DOUBLE PRECISION OBJGRI)O(3), R(NROWR,MAXN), X(tAXN)
2 8 DOUBLE PRECISION W ORK(LW RKi

-9 EXTERNAL OBJFNI, OBJFN2, CONFNI, CONFN2

31 PARAMETER (ZERO = 0.0, ONE = 1.0)
32
33 * Set the actual problem dimensions.
3. * N = the number of variables.

9. 35 * HCLIN = the number of general linear constraints (may be 0).
36 * UCNLN t the number of nonlinear constraints (may be 0).
37
38 NH :9
39 NCLIN = 4
40 ,hCNLN = 14
41 fIBD = N+ NCLIN+ HCHLN
4243 * -----------------------------------

44 * Azsign file numbers and the data arrays.
45 * NOUT = the unit nu ber for printin7.
46 * IOPTNS = the unit number for reading the options file.
47 * Boun'ds .ge. BIGBNrC will be treated as plus infinity.

_ 48 * Bounds .le. - BIGBI, will be treated as minus infinity.
4 49 * A = the linear constraint matrix.
50 * BL = the lower bounds on x, a'x and cx).
51 * aU = the upper bounds on x, a'x and c(x).
52 * X = the initial estimate of the solution.53 s * ------------------------------------------------------------------
*, ) OUT 6
55 IOPTNS = 5

W'p

-Rh-
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."

.' 56 BIGBND 1.00+15

58 Set the matrix A.
59
60 DO 40 J lN,
61 00 30 l = 1, NCLIN
62 A(IJ) = ZERO
63 30 CONTINUE
64 40 CONTINUE
65 A(1,1) = -ONE
66 A(1,2) = ONE
67 A(2,2) = -ONE
68 A12,3) = ONE
69 A(3,3) = ONE
70 A(3,4) = -ONE
71 A(4,4) = ONE
72 A(4,5) = -ONE
73
74 Set the boun~ds.
75
76 00 50 J = Is M "-

77 BL(J) = -BIGBNO
78 BU(J) = BIGBND)
79 50 CONTINUE
80 BL(M) = ZERO
1 BL(3) = -ONE
62 L(5) = ZERO
83 BL(6) = ZERO
84 BL(7) = ZERO
85 ;

66 BU(3) = ONE
87 BU(8) = ZERO
88 BU(9) = ZERO
89
90 t Set lower bounds of zero for all four linear constraints.

. 91
92 00 60 J = N1, N4NCLIN .

93 SL(J) = ZERO
1,4 60 CONTINUE
95

'. 9 Set upper bounds of one for all 14 nonlinear constraints.97m
C18 00 70 J = N *t4NLIN +, NB ."
99 BU(J) = ONE

100 70 CONTINUE
101
102 C Set the initial estimate of X.
103
104 X(1) = .1
105 X(2) = .125
106 X(3) = .666666
107 X( = .142857
108 X(5) = .111111
109 X(6) = .2
110 X(7) = .25

.5. 4

i U ,1

° " , •,
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!11 X(S) = -.2
12 X(9) = -.25

113
114

116 Read the options file.
t17 ------------------------------------------------------------------

118
119 CALL NPFILE( IOPTNS, INFORM )
120 IF (INFORM .NE. 0) THEN
1Z1 WRITE (HOUT, 3000) INFORM
122 STOP
123 END IF
124
125 ------------------------------------------------------------------
126 N Solve the problem.
127 ------------------------------------------------------------------
128
129 CALL NPSOL ( N, NCLIN, NCNLN, NROdA, NROWJ, ROWR,
130 $ A, BL, BU,
131 $ CONFNit OBJFNI,
132 $ INFORM, ITER, ISTATE,
133 $ C, CJAC, CLAtMA, OBJF, OBJGRO, R, Xs
134 $ IWORK, LIIORK, WORK, LORK )
135
136 IF (INFORM .GT. 0) 60 TO 900
137

: 138 ------------------------------------------------------------------
, 139 * The following is for illustrative purposes only.

140 * A second run solves the sane problem, but defines the objective
141 * and constraints via the subroutines OBJFN2 and CONFN2. Some
142 * objective derivatives and the constant Jacobian elements are not
143 * supplied.
144 * We do a warm start using
145 N ISTATE (the working set)
146 CLA,-DA (the Lagrange multipliers)
147 * R (the Hessian approximation)

148 * from the previous run, but with a slightly perturbed starting
149 * point. The previous option file must have specified
150 * Hessian Yes
151 * for R to be a useful approximation.S152 * ..................................................................

153
154 DO 100 J = 1, N
155 X(J) = X(J) + 0.01

*156 100 CONTINUE
* 157

158 The previous parameters are retained and updated.
159
160 CALL NPOPTN( ' Derivative level 0')

* 161 CALL NFOPTI|( ' Verify NO')
162 CALL NPOPT( W Harm Start')
163 CALL NPOPTN( ' Major iterations 20')
164
1 ,5 CALL NFOPTN( * Major print level 10')

*.
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166 N
167 CALL NPSOL ( N, HCLIN, NCHLN, HROW4A, IR01U, HROMRp,
168 A, BL, SU,
169 $ CONFN2, OBJF112,
170 $ INFORMP ITER, ISTATEP .-
171 $ C, CJAC, CLAtMA, OBJF, OBJGRO, Ro X9
172 $ IWORK, LIWORK, IORK, UORK I
173
174 IF (INFORM .GT. 0) 60 TO 900
175 STOP -
176
1 7 7 * 

"--- -- -
178 * Error exit.
179* -
ISO
181 900 W9ITE (HOUT, 3010) INFORM
182 STOP
183
184 3000 FCVIIAT(/ ' NPFILE terminated mith INFORM 's, 13)
135 3010 FORMAT(/ ' NFSOL terminated mith INFORM 1 13).
186
187 * End of the exampl, program for NPSOL.
I 3 .- I -
189 ENDR

191
192 SUSROUTINE OJFI( MODE, N, X, OBJF, OBJGO, HSTATE )
193 IFIPLICIT DOUBLE PRECISIOt4(A-HoO-Z)
194 DOUBLE PRECISION X(HR, OBJGRD(N)
195
196 * -----------------------------------------------------------------------
197 * OBJF4I coMutes the value and first derivatives of the nonlinear
198 * objective function.
199 * ---------------------------------------------------------------------
200 OBJF - X(2)*X(6) + X(1)*X(7) - X(3)*X(7) - X(5)*X(8)
-1 S * Xf,)*X(9) 4 X(3)*X(8)

2cz
203 OBJGPO(1) = X(7)
204 OWJGtOD(2) = - X(6)
203 OBJGO(3) = - X(7) * X(8)
206 OBJCR,}(4) = X(91
207 OBJGRO(5) = - X(81 q
208 OBJG (6) 0 - X(2)
209 0J-'-0(7) = - X(3) X(1)
210 CBJGD(8) = - X(5) 4 X(3)
211 CSJGRD(9) = X(4)
212
213 RETURN
2t4
215 N End of OBJFN1.
216
217 ENE

219
2,20 SUBROUTINE COHFNI( MODE, NCNLN, N, HROJ,

*. .'

4:,?.
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221 $ NEEOC, Xv Co CJAC, NSTATE I
222

223 IMPLICIT DOUBLE PRECISION(A-HO-Z)
224 INTEGER HEEDC(*)

E 225 DOUBLE PRECISION X(H)p C(*)p CJAC(IRO J,0)
226
227 * .......................................................................

228 * COHFNI computes the values and first derivatives of the nonlinear
229 * constraints.
230 *
231 * The zero elements of Jacobian matrix ore set only once. This
232 * occurs during the first call to CONFNI (NSTATE a I). :
233 * ---------------------------------------------------------------------
234 PARAMETER (ZERO = 0.0, TWO = 2.0) -.
235

" 236 IF (NSTATE .EQ. 1) THEN
237
238 * First call to COtFNI. Set all Jacobian elements to zero.
239 * N.B. This will only work with 'Derivative Level = 3.

* 240
241 DO 120 J :1 N
242 00 110 1 11 tH -CNLN
243 CJAC(IJ) = ZERO C-
244 110 CONTINUE
245 12e0 CONTINUE
246
247 END IF
248
249 IF (NEEC(I) .ST. 0) THEN
250 C(1) = X(1)**2 X(6)**Z
251 CJAC(1,1) = TWO*X(1)
252 CJAC(1,6) = TWO*X(6)
253 END IF

255 IF (NEEDC(2) ST. 0) THEN
2- 56 c(Z) W2x~) - x(l))**2 +(X(7) -X(6I).) }-t

257 CJAC(291) = - TWO*(XI2) - X(1))
253 CJAC(2,2) = T (O*IX(2) - X(1))
259 CJAC(2,6) = - T,10*(X(7) - X(6))
260 CJAC(2,7) = TWO*(X(7) - X(6))

* 261 END IF
262

" 263 IF (NEEDC(3) .GT. 0) THEN
264 C(3) ( (X(3) - X(1))u*2 * X(6)**2
265 CJAC(3,l) = - T40(X(3) - X(1))

* 266 CJAC(3,3) = TWO*(X(3) - XWI))
267 CJAC(3,6) TWOUX(6) .
268 END IF
269
270 IF (NEEDC(4) .GT. 0) THEN
271 C(4) : (X(l) - X(4))w*2 * (X(6) - X(8)J ..
272 CJAC(4,I) = T4O*(X(1) - X(4))
273 CJAC(4,4) = - Tk4*(X(1) - X(4)) -

274 CJAC(4,6) = T14*(X(6) - X(8))
- 75 CJAC(4,8) = - TWO*(X6) - X(8))

%
..IN.
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276 END IF
277
278 IF EEC(S) SGT. 0) MhEN
279 C(S) (M() - X(5))*2*z (X(6) -())*

*280 CJAC(5,1) = TWO*(Xt1) - X(S))
*281 CJAC(5,5) = -TbiO*(X(1 ) - X(S))

282 CJAC(5,6) = Tt,.'O(X(6) - X(91)
283 CJAC(5,9) =-TWO*(X(6) -X(9))

284 END IF
- 255
*2.36 IF (NEEDC(6) .GT. 0) THEN

2S7 C(6) = X(2)**2 4X(7)**t

*288 CJAC(6,2) = TWO*4X(2)
*289 CJAC(6o7) = TkO*X(7)

290 END IF
* 291

292 IF (NEEOC(7) .GT. 0) THEN
C 93 CM7 (M() - XI2))**2 + X(7)**2
Z 94 CJAC(7,2) =- TtWo*(X(3) - X(1)
? 95 CJAC(7p3) = ThO*(X(3) - X2)
296 CJAC(7,7) = TWC*X(7)
297 END IF
293
199 IF (NEEWC(S) SGT. 0) THEN
300 C(8) (X(4) - X(M**W2 WSX~) -X(7)1**t

301 CJAC(8,2) = - TWO*(X(4)-X2)

303 CJAC(8*7) =- ThO*(X(8) - X(7))
*304 CJAC(8,8) = Tt4O#*(X(8) - X7)

305 END IF
* 306
*307 IF (NEEDC(9) .GT. 0) THEN

308 C(9) (X(2) - X(5))**2 + (X(7) -X(9))**2

309 CJACM92) = TWO*(X(2) - X(5))
*310 CJAC(9p5) = - T140*(X(Z) - X(Sl)
*311 CJAC(9t7) = TW~O*(X(7) - X(9))
*312 CJAC(9,9) =- T140W(X(7) - X(9))
*313 END IF
* 314

315 IF (NEEDC(10) *ST. 0) THEN
316 C(10) L (X(4) - X(3))-2 + XISW'2 *

*317 CJAC(10,3) = - TWO*LXI4) - X(3)).
*318 CJAC(10,4) = Tk'O*IX('.) - X(3))
*319 CJAC(10,8) = TNO*X(8)
*320 END IF
* 321
*322 IF (NEEDC(11) SCT. 0) THEN

3:3 C111) I (S) - X(3))**2 + X(9)**r
324 CJAC(11,3) - TWO*(X(5) - XI 3))

*3215 CJAC(11,5) = TW~X(S) - X(3) 7
*326 CJAC(Il,9) = TWO*X(9)

327 END IF
3,8

*329 IF (NEE!OC(12) .ST. 0) THEN
C.330 C(12) = X(4)**2 + X(8)**Z

% %,
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331 CJAC(1,4A) x TWOtX(4)
332 CJAC(I2,8) = TWOeX(8)
333 END IF
334
335 IF (NEEOC(131 .ST. 0) THEN
336 C(13) = (X(4) - X(S))*N2 * X(9) X(S))*m2
337 CJACI13,4) = TIO*(X(4) - XIS))
338 CJAC(13,5) = - TWO (X(4) - XIS))
339 CJAC(13,8) = - TO*(X(9) - X(O))
340 CJAC(13,9) = TWO*(X(9) - X(81)
341 ENO IF
342
343 IF (NEEOC(14) .GT. 0) THEN
344 C(14) = X(5)**2 X(9)*W2
345 CJAC(14,5) z TNO*X(S)
346 CJAC(14,9) = TWO*X(9)
347 END IF
348
349 RETURN
350
351 W End of CONFNI.
352
353 END
35
355
356 SUBROUTINE OBJFN( MODE, N, X, O5JFp OJGRD, NSTATE I
357 IMPLICIT DOUBLE PRECISION(A-HO-Z)
355 DOUBLE PRECISION X(N), OBJGRDIH)
359
360 * -----------------------------------------------------------------------
361 * O3JFNZ computes the value and some first derivatives of the
:isZ nonlinear objective function.

364
365 OBJF - X(2)*X(6) * X(1)*X(7) - XI3)*X(7) - XIS)*X(S)
366 * X(4)*X(9) + X(3)X(8)
367
368 OBJGRD(3) = - X(7) * XI8)
369 OBJGRD(7) = - X(3) + X(I)
370 OBJGRD(8) = - X(S) + X(3)

* 371

372 RETURN
373 ,-
374 • End of OBJFNZ.
375
376 END"" ~377 **4++*********+***************************************************~e

378
379 SUBROUTINE CONFNZ( MODE, NCNLNi N9, CIJ,

-m..380 $ NEEDC, X, Co CJAC, NSTATE I
381
382 IMPLICIT DOUBLE PRECISION(A-H ,O-Z)
333 INTEGER NEEDC(*)
384 DOUBLE PRECISION X(N), CCC)9 CJACINROIJpS)

* 385

* ,. 3 51S.5.

-4,Ii
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3ft *-----------------------------------------------------------------------------------------
387 * CONFHZ cowputes the values and the non-constant derivatives of
38 * the nonlinear constraints.
389 * ------------------------------------ -----------------------------------

390 PARMJETER (TWO = 2.0)
391
392 IF (NEEOC(I) .GT. 0) THEN
393 C(!) X(I)**2 + X(6)*2"
394 CJAC(II) = TWOX(
395 CJAC(1,6) = TlO*X(6)
306 END IF
397
398 IF (NEEOC(Z) .GT. 0) THEN
399 C2) X(2) - X(1))**Z * 4X(7) - X(6))2,.
400 CJAC(Z,I) - TWO*(X(2) - X(I))
401 CJAC(2,2) 2 TNO*(X(2) - X(I))

402 CJAC(2*6) 2 - Tk'O*(X(7) - XC6))
403 CJAC(C27) = TO*(X(7) - X(6))
404 END IF

* 405
406 IF (HEEDC(3) .ST. 0) THEN
407 C3) (XM3) - X(C))**Z + X(6)*a2
408 CJAC(3,1) = - TWO*X(3) - XMt)"
409 CJAC(3,3) = TOG*(X(3) - X(l)) .

410 CJAC(3,6) : TWO*X(6) m
411 END IF
412
413 IF (NEEDC(4) .ST. 0) THEN
414 CM4) : (X(I) - X(4))**2 * (X(6) - X(8))es'
415 CJAC(4,I) = TWOMXI) - X(4))
416 CJAC(4,4) - T1,O*(XCt) - XM4))
417 CJAC(4,6) = TRON(X(6) - X(8))
418 CJAC(4,8) - TUO*(X(6) - X(8))
419 END IF
420
411 IF (HEEDC(S) .GT. 0) THEN
42? C(S) XCI) - X(S))**2 " CXC6) - X(1))**2
423 CJAC,5,) Tl1O*XI) -X:))

424 CJAC(5,5) - TWO*(X(1) - XC5))
425 CJAC(5,6) = TWO*(X(6) - X(9))
426 CJAC(5,9) =- TWO*(X(6) - X(9))
427 END IF
428
429 IF (NEEOC(6) .6T. 0) THEN
430 C6) = X(2)**2 X(7)a*2
431 CJAC(6,2) : ThO*XC)
432 CJAC(6,7) = TWD*X(7)
433 END IF
434
435 IF (NEEDC(7) .GT. 0) THEN -
436 C(7) (xC3) - X(2)) *Z X(7)e-2
437 CJAC(7,2) - TWI*(X(3) - X(2))
438 CJAC(7,3) = TNO*(X(3) - X(Z))

4 439 CJAC(7,7) = TWOX(7)
440 END IF

%I

%'
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4421
442 IF (NEEDC(8) .ST. 0) THEN
443 C(8) (XI'4) - X(2))**Z + (XIS)1 X(7))*2t
444 CJAC(8*2) = -TIIDUIXI') - X(2)) -
445 CJAC(8,'.) a TNOU(X('.) - X(2))c

N:446 CJACI8,7) = -TNO*IX(8) - X(7))
447 CJAC(as8) = TWO*(X18) - X(7))
44S END IF
449
450 IF (HEEOC(9) GT1. 0) THEN
451 C(9) (X12) - XIS))**2 *(X(7) -X(9))**tUZ

45Z CJAC921 = TWO*(X(2) - X(S11
453 CJAC(995) =- TWO*(X(2) - XIS))
454 CJAC(997) = TWO*(X(7) - X(9))
455 C!AC(9,9) =- TWO*IXI7) - X(9))
456 END IF
437
453 IF (NEEOC(I0) .ST. 0) THEN
459 C(10) = (X(4.) - X(3))*.2 + X(S)**Z
460 CJAC(I0,3) =-TkV*IX('.) - X(3))
461 CJACIIO,4) TWO*(X(4) - X(3))
462 CJACI10s8) TWD*X(8)
463 END IF
464
465 IF (NEEOCII) .6T. 0) THEN
466 CV11) (X(S) - X13))w2*Z X(9)**t
467 CJAC(It,3) =- TWO*IXIS) - X(3))
468 CJAC(11*5) = TWO*(X(S) - X(3)) 1469 CJAC(1I,9) = TWO*XI9)
470 END IF
471
472 IF (hEEDC(12) G6T. 0) THEN

43C(12) = X(4)**Z X(8)**Z
44CJAC(12,.) = T940*X(4)a ~ ~476 END IFWOfX8

478 IF (NEEDC(13) .G1. 0) THEN
479 C(13) (XE'4) - X(5))**Z + (X(9) -XI8)1)RZ

480 CJAC(t3,4) a TWONIXI'.) - X(5))
481 C4AC113#5) = - TIJOMIXI'.) - X(5))
482 CJAC(13,S) =- TWDN(X(9) - X(8))
483 CJAC(13,9) = TWI%6X(9) - X(8))
4304 END XF
485
4e6 IF (NEEDCII4) .GT. 0) THEN
457 C(141 = X(S)*2* X(9)**2
488 CJAC(I'.,5) = TWO*X(S)
4309 CJAC(I'.,9) z TWONX(9)
490 END IF
491

4 . 4'* RETURN
493
494. End of CONFNZ.

496 END

%p



46 Uaer's Guide for NP'OL 4.0

OPTIONS file

BEGIN Optiom for NP5OL 4.0 Sample problem.

Verify Level 3

IIajor Iteratiors limit so
Major print level 5

Start conmtraint check at colum I
Stop constraint check at colin 2
Start objective check at column 7
Stop objective check at column 9 n

Hessian Yes Ready for the next run.

End

SOLUIPSOL --- Version 4.0 Feb 1986

Parameters

Linear constraints ..... 4 Linear feasibility ..... i.9E-08 COLD start .............
Variables .............. 9 infinite bound size .... 1.00E*10 Crash tolerance ........ 1.00E-02

Infinite step size ..... 1.00E*10

Nonlinear constraints.. i Optimality tolerance... S.36E-It Function precision ..... 8.16E-15
Nonlinear Jacobian vars 9 Nonlinear feasibility.. 1.49E-08

Nonlinear objectiv vats 9 Linesearch tolerance... 9.OOE-OW
EPS imachine precision) 2.22E-16 Derivative level ....... 3 Verify level ........... 3

Major Iterations limit. s0 Major print level ...... S
M iinor iterations limit. ai Minor print level ...... 0

W Uorkspace provided Is IN( 70)t W( 1000).
To solve problem e need IMI 59), N( 968).

. Verification of the constraint gradients.
% -..--------------------------------- - -----

The Jacoblan sees to be ok.

The largest relative error was 9.98E-09 In constraint &

Colum XI.)) DXI.) Rome Jooblan Value Difference Dpprom Xtn

%"

1%

A\.~
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I 1.O0E-01 1.31E-07 I 2.000000481[-0! E.000000481-ol OK 1
1.28E-07 2 -4.99999523E-02 -4.99999523E-02 OK I
1.49E-07 3 -I.13333189E*00 -I•13333189E400 OK I
1 .38E-07 4 -8.57139826E-02 -8.5713926E-02 OK I
1.0E-07 S -2.22219229E-02 -2.22219229E-02 OK I

Colum XJ) DOXJ) Raw Jacoblan Value Difference Approim Itna

2 1.2SE-OS 1.28E-07 2 4.999995231-02 4.99999523E-02 OK 1
1.33E-07 6 2.o0000000E-Ot 2.5000000-ooo OK I
1.49E-07 7 -1.08333194E*00 -i.08333191400 OK I
1.40E-07 8 -3.57140303E-02 -3.57140303E-02 OK I
.63E-07 9 2.77780294E-02 2.77780294E-02 OK I

'+. 10 Jacoblan elements out of the 10 set In cols I through I seem to be ok.

The largest relative error was 2.13E-11 In row 9, column 2

Verification of the objective gradients.

The objective gradient& seem to be ok.

Directional derivative of the objective 1.2053%30E-0I
Difference approxtation 1.20539630E-01

J XIJ) OXIJ) G(J) Difference approxn Itn"

7 2.SOE-01 2.261-06 -5.66665971-01 -5.66665947E-01 OK 3

8 -2.00E-01 2.17E-06 S.S5554986E-0I S.55556986E-Ol OK 3
9 -2.50E-01 2.26E-06 1.4285701SE-01 I.42857@I5E-Ot OK 3

3 Objective gradients out of the 3 set In cola 7 through 9 seem to be ok.

'The largest relative error was 2.21E-11 In element 7

Iin ZtQP Step Nfun Mierit nd Lin Nln Rz Norm Gf More Sz Cond i Cond Hz Cond T Norm C Penalty Cony
0 S 0.0100 I -3.1349171-01 3 0 1 5 8.8E-01 3.7E-01 I.E00 I.E*00 1.E*00 8.81-01 0.0E*00 F FF

- I 9 1.0E400 2 -1.07S027F*00 1 0 3 5 2.2E00 1.51400 I.E#02 7.E+00 2.E400 8.6E-01 1.3100 F FF
2 4 1.OE00 3 -1.26853E00 1 0 4 4 1.7E400 3.3E-01 9.E400 1.E100 2.E400 1.3E-01 I.3E*00 F FF
3 2 4.0 6 -1.331667E400 1 0 5 3 1.9E*00 2.5E-01 4.1401 2.E*00 2.E400 1.1E-01 1.3E400 F FF
4 1 .01400 S -1.34935400 0 S 3 1.8E+00 4.5E-02 3.E+01 I.E#00 2.E+00 IAE-02 1.3E+00 F FF

10E+5 01.0 0 6 -1.349874E*00 1 0 S 3 I.8E+00 6.7E-03 3.E+01 t.E*00 2.E400 9.1E-04 1.3E*00 F FF
6 1 I.OE*00 7 -1.349913E#00 1 0 5 3 I.8E*00 5.31-03 3.E*01 2.E+00 2.E+00 S.7E-05 1.3E400 F FF
7 1 1.0E400 8 -1.349963E00 1 0 5 3 I.SEO0 1.2f-03 I.E#02 2.E+00 2.E*00 3.1E-04 6.8E+00 F FF
8 1 .OE+00 9 -1.349963E+00 1 0 5 3 1.8E*00 1.6E-04 I.E+02 3.E*00 2.A400 9.0E-07 6.81400 F FF
9 1 .OE4O0 10 -I.399631400 1 0 5 3 1.6E*00 5.6E-06 3.E401 2.E400 2.E#00 1.2E-08 6.8E*00 F TT
10 1 1.0[*00 11 -1.349963E100 1 0 5 3 I.8E00 2.E-07 4.E*01 2.E*00 2.E400 6.41-l1 6.8E*0 F TT
It I 1.OE400 12 -1.349963E*00 1 0 5 3 I.8E*00 I.IE-08 I.E*02 2.E*00 2.1*00 4.7E-14 6.8E400 T TT

. Exit PIP phase. INFORM = 0 MAJITS 11 HFUH w 12 IGRAD x It

Exit 14POL - Optimal solution found.
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1 Final nonlinear objective value -1.349963 p

Calls to NPOPTh

Derivative level 0
*Verify No

Mare Start
Major iterations 20
Major print level 10

SOLAIPSOL --- Version 4.0 Feb 1986

52*

Paramters

Linear constraints ..... 4 Linear feasibility ..... 1.49E-08 MAR" start ............
Variables .............. 9 Infinite bound size .... I.OOE* O Crash tolerance ........ I.OOE-02 ,

Infinite step size..... 1.00E*IO

Nonlinear constraints.. 14 Optimalltv tolerance... 5.36E-12 Function precision ..... 8.16E-15
NHonlinar Jacoblan vars 9 Nonlinear feasibility.. 1.49E-08
Ilonlinear objectiv vars 9 Linesearch tolerance... 9.00E-O1
EPS (machine precision) Z.22E-16 Derivative level ....... 0 Verify level ............-.. "...

MajIor iterations limit. 20 Major print level ...... 10
Minor iterations limit. 81 Minor print level ...... 0

Workspace provided is 1)( 701v W( 1000).
To solve problem m need I1I 591 WI 968).

live uar sets 44 out of 126 Jacoblan elements.
Each iteration, 82 Jacobian elements mill be estimated numerically.

The user sets 3 out of 9 objective wradient elements.
Each iteration, 6 gradient elements will be estimated numerically. "-

Computation of the finite-difference Intervals

J XIJ) Forward DXJ) Central DXiJ) Error est.

I 7.09E-02 1.93S067E-06 1.935067E-05 1.979764E-08
2 6.08E-01 2.904821E-06 2.904821E-05 1.318833E-08

,3 I.00E400 3.613750E-07 3.613750E-06 0.000000E*00
4 6.08E-01 2.904821E-06 2.904821E-05 1.318833E-08
S 7.09E-02 1.935067E-06 I.935067E-05 1.979764E-08

6 3.54E-01 2.446096E-06 2.446096E-05 1.S66159E-08
7 S.IO

r  
i 2.728381E-07 2.728381E-06 0.00000E40 :

%'
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a -4.90E-01 2.692244E2-07 2.692244E-06 0.00000040p9 -3.34E-01 2.409958E-06 2.409958E-05 I .59644E-08

82 constant constraint gradient elements assigned.

0 constant objective gradient elements assigned.

All missing Jacobian elements are constants. Derivative level increased to a

* Itn ItQP Step Nfun Ilerit Bnd Lin "In Rz Norm SI Norm Gz Cond NCond Nz Cond T Norm C Penalty Cony
0 i 0.02400 1 -1.3491882400 1 0 5 3 1.8E400 I.SE-02 3.Ef01 4.E400 1.E400 2.8E-02 2.2E+00 F FF
I I 1.0E400 3 -1.349963E*00 1 0 5 3 1.8E#00 1.3E-03 I.E402 7.E400 1.E400 3.02-04 3.OE*02 F FF11

* 2 1 1.0E+00 4 -1.349%63E+00 1 0 s 3 i.aE#00 3.SE-04 6.2401 6.E*00 2.E#00 7.82-07 2.12401 F FF
*3 1I-102400 S -1.34.9%3E+00 1 0 5 3 1.8E#00 2.0E-04 8.E#01 3.E400 2.2400 2.3E-08 7.7E*00 F FF

4 1I 10E#00 6 -1.349963E*00 1 0 S 3 1.8E*00 7.4E-06 9.E401 3.E#00 2.2400 3.9E-08 7.7E
4
00 F FF

5 1 1.0E+00 7 -1.349%63E400 1 0 5 3 1.8E#00 5.92-07 2.2402 3.E400 2.2400 4.02-il 7.72400 F TT
6 1 1.0E400 8 -1.3499%3E+00 1 0 5 3 1.8E+00 2.62E-09 6.E*01 2.E400 1.2400 2.02-13 7.7E400 T T

Exit NP phase. INFORII =0IAJITS: 6 NFUNI 8 NGRAD 2 7

Variable State Value Lower boun~d Ltpper boun~d Lagr multiplier Residual

VARBL I FR 0.60946652-01 0.00000002400 None 0.00000002400 0.60952-01
VARBL 2 FR 0.5976493 None None 0.0000D00E400 0.1000E~i6
VARBL 3 UL. 1.000000 -1.000000 1.000000 -0.6875429 0.0000E400

* VARBL 4 FR 0.5976493 None None 0.0000000E400 0.1000E#16
VAPZ3L S FR 0.609466S2-01 0.00000002400 NOMe 0.00000002*00 0.60952-01
VARBL 6 FR 0.3437715 0.00000002400 None 0.0000000E+00 0.3438 .

VARBL 7 FR 0.5000000 0.00000002400 Non, 0.0000000E#00 0.5000
VARBL 8 FR -0.5000000 NONe 0.0000000E400 0.0000000E+00 0.5000

S VARBI 9 FR -0.3437715 None 0.0000000E+00 0.0000000E400 0.3438

Linear constr state Value Lower batau Lper bon.ad Lagr multiplier Residual

LIXOII I FR 0.5367026 0.0000000E+00 None 0.00000002400 0.5367
UZ~ON 2 FR 0.4023507 0.0000000E#00 None 0.0000000E#00 0.4024
W?.ON 3 FR 0.4023507 0.0000000E+00 None 0.00000002400 0.4024
LICON 4 FR 0.5367027 0.0000000E+00 None 0.0000000E+00 0.5367

* Norlnr constr State Value Lower botmd kiper bounmd Lagr multiplier Residual

PJICON I FR 0.1218933 Nore 1.000000 0.0000000E+00 0.8781
t4LtON 2 FR 0.3124571 None 1.000000 0.0000000E+00 0.6875
MCCHl 3 UL. 1.000000 None 1.000000 -0.8318406E-01 :0.1652E:I2

WlCOtI 5 FR 0.4727152 None 1.000000 0.00000002400 0.5273
PILCO1 6 FR 0.6071847 None 1.000000 0.0000000E+00 0.3928
NLICON 7 FRl 0.4118861 None 1.000000 0.00000002400 0.5881
NLCCH 8 UL 1.000000 None 1.000000 -0.1992983 0.0000E#00
MICCN 9 Ut. 1.000000 None 1.000000 -0.3202625 -0.8882E-14
NLCCU1 10 FR 0.411886? None 1.000000 0.00000002400 0.5881
1I.itl It UL. 1.000000 None 1.000000 -0.8318406E-01 -0.26652-13
MUM lLO~ 12 FR 0.6071847 None 1.000000 0.0000000E+00 0.3928
WICON 13 FR 0.3124571 None 1.000000 0.00000002400 0.6875
1JLCON 14 FR 0.1218933 None 1.000000 0.^-1)000E+00 0.878

* . Exit NPSOL -Optimal solution found.

Final nonlinear objective value a -1.349%63



50 User's Guide for NPSOL 4.0

INDEX Cheap gradient test, 23.
Checklist of optional parameters, 23. F

AL (general linear constraint matrix), 1, 5, 21. Cholesky factor, 3, 5, 6, 10.

AN (Jacobian of nonlinear constraints), 2, 5 (also CJAC, 10 (definition), 14.

see Jacobian matrix). CLANDA, 10 (definition), 17.
At, 7 (definition). Cold Start, 0, 10, 17 (definition).

Accuracy Comment (in optional parameter specification),

desired in optimal solution, 21-22, 27 (also see 15.
Optimality Tolerance). Common blocks, list of, 32.

of finite-difference gradients, 19. Cond H, 25.
of linesearch, 20. Cond Hz, 25.7N
of nonlinear constraints at solution, 22, 27 Cond T, 25.

(also see Nonlinear Feasibility Tolerance). Conditions for optimality, 2, 8, 21-22, 25, 27.
of projected gradient at solution, 22, 27. CONFUN (user-provided subroutine)

" Accurate linesearch, when appropriate, 20. calls needed for unspecified Jacobian elements,

Active constraints 18.
defihition, 2. definition as parameter of NPSOL, 8.

predicted, 3, 24. specification, 13-14. -.

residuals at solution, 8, 20, 22. Constant Jacobian elements
Active simple bound, 2 (also see Fixed variable), assignment of 10, 14.
Algorithm of NPSOL, description, 2-6. automatic computation of, 14, 35.
a (step length in major iteration), 2, 4, 6, 22, 24. Constrained linear least-squares, 1.

choice of, 4, 6. Constrained stationary point for QP, 5.
printed value, 24. Constraints

Amndahl 470, 30. dependencies, resolution of, 27, 28-29.
ANSI (1977) Fortran, 1, 30. nonlinear, specification by user (see CONFUOR).
Approximate status indicator (see ISTATE).

gradients (see Finite-difference appraxima- violation, maximum acceptable, 19, 20 (also
tions). see Linear Feasibility Tolerance and Nonlin-

Hessian of Lagrangian function, 3, 4, 6, 19, 21. ear Feasibility Tolerance).
ASCII, 30. Cony (printout of convergence test status), 25.
Assignment of constant elements in Jacobian, 10. Convergence test, 21-22 (also see Optimality L
Attainable accuracy, 18. conditions).
Augmented Lagrangian merit function, 4, 6, 20. Cost

printed value, 24. of automatic computation of finite-difference r.

Automatic computation of finite-difference inter- intervals, 19. ""

vals, 18-10. of unspecified objective gradient elements, 18.
of unspecified Jacobian elements, 18.

DAD?, 23. Crash Tolerance, 17, 18 (also see Cold Start).
Badly scaled problems, 19. Cray-1 and Cray-2, 30.
Begin (in options file), 15-16. Cyber, 30.
BFGS quasi-Newton update, 4, 6 (also see Ap-

proximate Hessian of Lagrangian function). d (search direction in QP method), 4-5.
BICDIJD. 8, 19-20, 20. Data General MV/8000, 30.
BL. 7 8 (definition), 9, 26. DEC Systems 10 and 20, 30.
BLAS, 31. DEC VAX, 30.

Level 2, 31. Default values of optional parameters, checklist
Bnd, 3, 24. of, 23.
Bounds and linear constraints, separate treat- Defaults (optional parameter), 16-17.

inent of, 3, 4, 6, 9, 17. Dependencies, constraint, resolution, 27, 28-29.
BU. 8 (definition), 9, 26. Derivative
Burroughs 6700 and 7700, 30. checking (see Verify).

finite-difference (see Finite-difference approxi-
c(z) (nonlinear constraints), 1, 3, S. mations).

printout of, 21. specification (see Derivative Level).
C (predicted active set), 2, 3. Derivative Level, 3, 10, 12, 13, 14, 18, 35.
CPR, 2, 3, 5. Diagonals
C (array of nonlinear constraints), 10 (definition), of R, printout, 21.

13. of T, printout, 21. r
C (printed indication of switch to central differ- Difference Interval, 4, 14, 18.

ences), 25. use in approximating unspecified gradients, 19. U
CDC 0000 and 7000,30. use in verification of gradients, 18.
Central Difference Interval, 17 (definition). Discontinuities, isolated, 1.
Central differences, switch to, 25. Distribution tape, format of, 30.

U ._.
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Double precision Hessian, 19 (definition).
table of machine constants, 33. Hessian, transformed and reordered (see HQ).
version of code, 30. Hexagon example, 34.

DOUBLE, 7. Hitachi, 30.
Honeywell, 30. ,

End (in options file), 15-16. 1 (printout indicating infeasible QP subproblem),

EPS, 32. 
24, 25.

c (machine precision), 17, 19, 32, .3. IBM
c)? (function precision), 17, 19, 21, 27. 360/370 and 3033/3081, 30.
EQ (printed constraint status), 25. VS Fortran, 31.
Equality constraint, 1, 8. ICL 2900 series, 30.
Errors in gradients, 20. Identity matrix, in resetting Hessian, 29.

- Estimated Lagrange multiplier (see Lagrange III conditioning, effects of, 27, 28-29.
* multiplier). Implementation information, 30-33.
* Example problem for NPSOL, 34-35. Inaccuracies, effect of, 28.

External file, use for option specification, 15-16. Inaccurate lineseareh, 20.
Inconsistent linear constraints, treatment, 28.

S .F(z) (objective function), 1. Incorrect gradients, 8, 28 (also see Verify).
S-" Facom, 30. Inequality constraints (nonlinear), treatment in

Failure in linesearch, 28. merit function, 6.
S;.. Feasibility phase in QP method, 4, 5, 20. Infeasible problem

selection of initial working set, 9. in QP subproblem, 5, 9, 24, 25, 28.
Feasibility Tolerance, 19 (definition). for bounds and linear constraints, 4, 8, 28.
Finite-difference for nonlinear constraints, 8, 28.

approximations to gradients, 1, 3, 12. Infeasibilities, 4, 5, 24, 25.
checking of gradients (see Verify). Infinite Bound Size (BlGBND), 19 (definition).
intervals, automatic computation, 14, 19. Infinite lower or upper bound, 1, 8.
tradeoffs in computing, 18. Infinite Step Size, 20 (definition).

First-order Kuhn-Tucker conditions, 2, 8, 22, 27. INFORM, 8 (definition).
Fixed variable, 2, 4, 8. Initial working set in QP subproblem,
Formal parameters of NPSOL, 7. with Cold Start, 9, 17-18.
Format of distribution tape, 30. with Warm Start, 9, 17.
Fortran 77, 1, 31. Input parameter, invalid, 8, 29.
Fortran subroutines, naming convention, 31-32. Installation procedure, 30.
FR (subscript), 3 (definition), 4 (also see Free Interpretation of results, 27-29.

variable). Invalid input parameter, 8, 29. 4
FR (printed constraints status), 25. IOPTNS (options file number), 15-16.
Free variable, 2, 3, 4. Isolated discontinuities, 1.
Fujitsu, 30. ISTATE, 9 (definition), 17.
Function precision (see cR). printout, 25, 26.
Function Precision, 17, 19 (definition), 27. ITER, 8 (definition).
FX (subscript), 3 (definition), 4. Iteration Limit, 20 (definition).

Itors, 20.
g(x) (objective gradient), 2. Itn (printed value), 24.
9Fn, 2. Itna, 20.
Gabor, Zsa Zsa, 19. ItQP (printed value), 24.
Global convergence, 6. IV, 11 (definition).
Gradient

approximations (see Finite-difference approxi- Jacobian matrix (nonlinear constraints), 2, 3, 8,
mations). 10, 14.

constraint (see Jacobian matrix), assignment of constant elements, 10, 14.
of Lagrangian function, 6. specification by user (see CONFUN).
projected (see Projected gradient). unspecified elements, 18.
specification by user (see CONFUN and OBJFUN).

"HsinoKuhn-Tucker conditions, first-order, 2, 8, 22, 27.
H (approximate Hessian of Lagrangian function), Keyword in option specification, 15. ..,

3, 6, 19, 25. -
HQ, 4, 6, 19, 25. 1 (lower bound vector), 1, 3, 7-8 (also see 8L).
t, 19. Lack of progress in major iteration, 28.
Hz, 25. Lagr multiplier (printed value), 26.
IDIXWIIE, 32. Lagrange multiplier, 2, 3, 6, 10, 26.
Hessian approximation (see Approximate Hessian of QP subproblem, 5, 21.

of Lagrangian function). optimal, 5.

.. ** * ~ ~ '~ * * . * * .. * -. , ,
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A, 2, 0 (also see Lagrange multiplier). Namsing convention, Fortran subroutines, 31-32.
LENIW, 11 (definition). Natural order of variables, 10.
LENW, 11 (definition). NBASE, 32.
Level 2 BLAS, 31. NCLIN, 7 (definition) (also see m).
Limiting accuracy, 18. NCNLN, 7 (definition), 13.
Lin, 3, 24. NDIGIT, 32.
Linear constr, '&6. NEEDC, 13. a"

Linear Feasibility Tolerance, 4, 9, 20 (defini- Nfun (printed value), 24.
tion). NIN, 32.

adjustment to avoid overflow, 27. NLCON, 26.
Linear least-squares code (see LSSOL). Nln (!rinted value), 3, 24.
Lines of code in NPSOL, 1, 30. No feasible point
Linesearch, 4, 0, 20 (also see Step length). for bounds and linear constraints, 4, 8, 28.

effect of accuracy, 20. for nonlinear constraints, 8, 28.
Sroutines for, 32. in QP subproblem, 5, 9, 24, 25, 28.

Linesearch Tolerance, 20 (definition). No progress in linesearch, 8, 28.
LL (printed constraint status), 25. Nolist option, 16.
LNCON, 26. Non-existent lower or upper bound, 1, 8.
Local minimum (see Optinmality conditions). None (in printout), 26. .
Lower bound (in printout), 26. NOUT, 32.
LSSOL, 1, 3, 4. Nonlinear Feasibility Tolerance, 9, 20 (defini- a

tion), 21.
m (number of constraints in predicted active adjustment to avoid overflow, 27. .,

set), 3. Nonlinear constraints
m, (nmunber of general linear constraints), 1. inequality, in merit finction, 6.
mN (number of nonlinear constraints), 1. predicted active set, 3.
N (printed indicator of modified Hessian update), specification by user (see CONFUN).

6, 25, 28. violated, residuals of, 25.
_ Machine constants Nonlinear optimization, routines for, 32.

computation of, 32. Nonlnr constr, 26.
tables of, 33. Norm C, 25.

Machine precision (see e). Norm C', 3, 25.
Major iteration, 2. Norm Cz, 3, 25.
Major Iteration Limit, 8. 20 (definition), 28. NP (problem statement), 1, 2.
Major Print Level, 8, 11, 20 (definition), 24, 25. NPFILE, 15-16.
Maximum acceptable constraint violations (see NPOPTN, 16.

Linear Feasibility Tolerance and Nonlln- list, sample 16.
% ear Feasibility Tolerance). NPSOL

MCHPAR. 32 (also see Machine constants). algorithm of, 2-6.
Merit function, 4, 6, 20, 24. lines of code, 1, 30.
Merit (printed value), 24. parameters of, 7-11.
Method specification, 7.

of NPSOL, description, 2-6. solving related problems, 17.
QP, 4-5. NEOnA, 7 (definition).

Minimum abbreviation (of optional parameter), NtOWJ, 7 (definition), 13. , .
15. NEOWR, 7 (definition).

Minimum sum of infeasibilities in QP, 5 (also see NSTATE, 12, 14.
Feasibility phase). Null space, 3.

Minor iteration (within QP method), 2, 3, 4-5. dimension of (see az).
," Minor Iteration Limit, 21 (definition). Nz, 24. 'a

Minor Print Level, 21 (definition), 24. r-
MINOS, 1. Objective (printed value), 24. ', '

MODE Objective function (F(z)), 1.

in CONFUN, 13. precision of (see cRt).

in OBJFUN, 12. specification by user (see ODJFVN).
Modification of quasi-Newton update, 6, 25, 28. OBJF, 10 (definition), 12. -:",

" v, 6. ODBJFUN (user-provided subroutine)
Multiplier (see Lagrange multiplier), calls needed for unspecified gradient elements,18.

n (number of variables), 1, 3 (also see ,). definition as parameter of NPSOL, S. "
n',1 (number of free variables), 2, 3. specification, 12-13.
Sn;x (ntnber of fixed variables), 2 (also see Dm4). ODJGRD, 10 (definition), 12.
nz, 3, 24. OK, 23.
N, 7 (definition), 12, 13. Optimal

%U. , .. .-.. : : , , .. 1 -,.
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Lagrange multiplier, 5. Rank-two modification (see Quasi Newton up-
solution (see Optimality conditions). date).

Optimniality REAL, 7.
conditions, 2, 8, 21-22, 25, 27. Re-ordered Hessian (see Approximate Hessian of
phase, in QP method, 4, 5, 9, 21. Lagrangian function).

Optimality Tolerance, 20, 21-22 (definition), 25, References, 36.
27. Related problems, solved by NPSOL, 17.

Option-handling routines, 31. Resetting
Optional parameters, definition, 15-23. Hessian matrix, to overcome ill-conditioning,
Options file, 15-16. 29. p
Ordering of variables, 10. optional parameters to defaults, 16-17.

Orthogonal transformation, 3. Residual (printed value), 28.
Output (see Printout). Residuals, constraint

. - Overflow, 27. allowed maximum at solution (see Linear Fea
sibility Tolerance and Nonlinear feasi-

p (search direction in major iteration), 2, 4. bility Tolerance).
Parameters in optimality conditions, 22

of C0NYN, 13-14. Resolution of constraint dependencies, 27, 28-29.of CNFU, 1314.Reverse-triangular matrix, 3 (also see T).
*. '. - of NPSOL, 7-11.
* of 0BJFUN, 12-13. p (see Penalty parameters).

Penalty parameters (in merit function), 6, 25. LKAX, 32.

Penalty (printed value), 25. fucio)NIII, 32.
Phase 1 (see Feasibility phase). ITEPS, 32.

Phase 2 (see Optimality phase). I1MI, 32.

Phrase (to modify optional parameter), 15. tT1IN, 32.
" "Positive-definite Hessian approximation (see Ap- Scaling techniques, 19.

proximate Hessian of Lagrangian function). Search direction
Precision in major iteration, 2, 4.

' function (see eR). in QP subproblem, 4-5.
(see ). Separate treatment of bounds and linear con-

of linear constraints, relation to Linear Feasi- straints, 3, 4, 6, 9, 17.
bility Tolerance, 28. Sequential quadratic programming algorithm (we

Predicted active set (see Active constraints and SQP algorithm). a t
Working set). (step length

Preloading constant Jacobian elements, 10, 14. Single precision m o

Primal method (for QP), 4. table of machine constants, 33.
Prime Systems, 30. version of code, 30. S.

*Print Level, 20 (definition). Singularities in objective function, 27.
Printout Slack variables in merit function, 6.

control of, 20-21. Source files, list, 30.
description, 24-26. Sparse problems, 1.

Programming errors, symptoms, 29. Specification
Projected gradient of CONFON, 13-14.

of nonlinear objective, 2, 3, 8, 21-22, 25. of NPSOL, 7.
of QP subproblem, 5. of OJFU, 12-13.

SQP algorithm, 2-4, 6.
Q, 3, 6. Start Constraint Check, 22 (definition).

SQFR, 3 , 5. Start Objective Check, 22 (definition).
Quadratic program State (printed value), 25.

method of LSSOL, 4-5. Status of constraints (see ISTATE).
multipliers, 3, 5, 6. Step (printed value), 24.
subproblem, 2, 4-5. Step length

Qualifying phrase (in optional parameter), 15. in major iteration (a), 2, 4, 6, 22, 24.
* - Quasi-Newton in QP method (a), 5.
- -approximation (see Approximate Hessian of Stop Constraint Check, 22 (definition).

Lagrangian function). Stop Objective Check, 22 (definition).

update, 4, 6. Sufficient decrease (see Step length).
QPSOL, 1. Sum of infesibilities

in QP, 4, 5.
R, 3 of nonlinear constraints, 22, 25.
Rz, 5, 25. Synonyms (for optional parameters), 15.
R, 10 (definition), 19, 21.
Rank-one update to R, 6. T, 3, 5, 21, 25.
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Tape e* (printed constraint status), 25 (also see Infea-
characteristics, 30. sible problem).
format, 30.

Termination
criteria, 8, 20 (also see Optimality conditions).
user-controlled, 8 (see MODE).

TQ factorization, 3, 5.
Transformed and re-ordered Hessian (see Ap-

proximate Hessian of Lagrngian function).
Two-phase primal method for QP, 4.

u (vector of upper bounds), 1, 3, 8 (also see 3).
UL (printed constraint status), 25.
Unbounded objective function, 20.
Underflow, 27.
Univac 1100, 30.
Unspecified derivatives, 1, 18.
Update

of Hessian approximation (see Quasi-Newton,"-,
update). .

of working set in QP method, 5.
Updating matrix factorizations, routines for, 31.
Upper bound (in printout), 26. ".*
Upper-triangular matrix (see Cholesky factor).
User-requested termination (see MODE).
User-supplied subroutines, 12-14.

Valid option strings, examples of, 15.
Value (printed value), 26.
VIRBL, 25.
Variable, 25.
Verification of gradients, 4, 18, 22-23, 29.
Verify, 4, 12, 22 (definition).
Verify Level, 22 (definition). L'K
Vertex, 5. r. t
Violations, constraint (see Infeasibilities).

W, 11 (definition).
Warm start, example of, 35
Warm Start, 9, 10, 17 (definition). .
Well scaled problems, 19.
WNAC!!, 32 (also see Machine constants).
Working precision (see c).
Working set, 3, 4, 9.

changes in, 5.
initial, in QP, 17-18.
Condition estimate (see Cond T). .

Workspace parameters, 11. -.

z (vector of unknowns), 1, 2. -

printout, 25. ,: - "
X, 11 (definition), 12, 13.
f (Lagrange multipliers for active bounds), 2.
z* (solution of NP), 2, 3.

* Y, 3.

Zgbasis for null space), 2, 5, 24.
Z prR 2, 3.
Zero Jacobian elements, 14.

-- (printed constraint status), 25 (also see Infe-,
sible problem).
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hICUNhTY CLASSIFICATION OF THIS PAO9 r~h J Dae &Uwe* ,

ABSTRACr: USER'S GUIDE FOR MPSOL (VERSION 4.0): A FORTRAN PACKAGE FOR %
NONLINEAR PROGRIAMING by Philip 9. Gill, Walter M urray,
Michael A. Saunders and Margaret H. Wright.

This report forms the user's guide for Version 4.0 of NPSOL, a set of Fortran b

subroutines designed to minimize a smooth function subject to constraints,
which may include simple bounds on the variables, linear constraints and
smooth nonlinear constraints. (NPSOL may also be used for unconstrained,
bound-constrained and linearly constrained optimization.) The user must
provide subroutines that define the objective and constraint functions and
(optionally) their gradients. All matrices are treated as dense, and hence . * .,
NPSOL is not intended for large sparse problems.

NPSOL uses a sequential quadratic programming (SQP) algorithm, in which the -.

search direction is the solution of a quadratic programming (QP) subproblem.
The algorithm treats bounds, linear constraints and nonlinear constraints
separately. The Hessian of each QP subproblem is a positive-definite
quasi-Newton approximation to the Hessian of the Lagrangian function. The
steplength at each iteration is required to produce a sufficient decrease in -

an augmented Lagrangian merit function. Each QP subproblem is solved using a
quadratic programming package with several features that improve the
efficiency of an SQP algorithm.
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